
7100109

7100109

JUNOS® Software Automation Series

Day One: Applying JUNOS

Automation

By Curtis Call

Chapter 1: Introducing JUNOS Automation5

Chapter 2: Writing Your First Script19

Chapter 3: Understanding SLAX Language
Fundamentals . 27

Chapter 4: Communicating with JUNOS 53

Supplemental JUNOS automation information is available in the

PDF version of this booklet:

Appendix .79

© 2009 by Juniper Networks, Inc. All rights
reserved. Juniper Networks, the Juniper Networks
logo, JUNOS, NetScreen, and ScreenOS are
registered trademarks of Juniper Networks, Inc. in
the United States and other countries. JUNOSe is a
trademark of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks,
or registered service marks are the property of
their respective owners.

Juniper Networks assumes no responsibility for
any inaccuracies in this document. Juniper
Networks reserves the right to change, modify,
transfer, or otherwise revise this publication
without notice. Products made or sold by Juniper
Networks or components thereof might be covered
by one or more of the following patents that are
owned by or licensed to Juniper Networks: U.S.
Patent Nos. 5,473,599, 5,905,725, 5,909,440,
6,192,051, 6,333,650, 6,359,479, 6,406,312,
6,429,706, 6,459,579, 6,493,347, 6,538,518,
6,538,899, 6,552,918, 6,567,902, 6,578,186, and
6,590,785.

Day One Series Editor: Cathy Gadecki
Writer: Curtis Call
Copyeditor and Proofing: Nancy Koerbel
Literary Management: Ames & Eames, Inc.
Printed in the USA by Vervante Corporation.

Version History: v1 September 2009
2 3 4 5 6 7 8 9 10

About the Authors
Curtis Call is a Systems Engineer at Juniper
Networks. He is JNCIE-M #43 and has eight
years experience working with JUNOS devices.

Author’s Acknowledgments
The author would like to thank all those who
helped in the creation of this booklet. The literary
manager, Patrick Ames worked with me to find the
fight outlet for this material and Nancy Koerbel
fine-tuned my writing. The Day One Series Editor
Cathy Gadecki was instrumental in bringing this
project to fruition and helped me position the
content to be more instructional. Roy Lee, the
JUNOS automation Product Line Manager,
reviewed the manuscript several times and always
found ways to clarify the presenation.
Thank you all.

A free PDF version of this booklet is available at:
www.juniper.net/dayone.

 ii

Welcome to Day One

Day One booklets help you to start quickly in a new topic with just the
information that you need on day one. The Day One series covers the
essentials with straightforward explanations, step-by-step instruc-
tions, and practical examples that are easy to follow, while also
providing lots of references for learning more.

Why Day One Booklets?

It’s a simple premise – you want to use your Juniper equipment as
quickly and effectively as possible. You don’t have the time to read
through a lot of different documents. You may not even know where
to start. All you want to know is what to do on the first day, day one.

Day One booklets let you learn from Juniper experts, so you not only
find out how to run your device, but also where the shortcuts are, how
to stay out of trouble, and what are best practices.

What This Booklet Offers You

This first booklet in our JUNOS Software Automation series helps you
to automate operations tasks in your devices. Read this booklet to
learn how to use the JUNOS automation scripting toolset and how to
write your first operation scripts.

When you’re done with this booklet, you’ll be able to:

PUnderstand how the JUNOS automation tools work.

P Explain where to use the different JUNOS script types.

P Use reference scripts from this book and Juniper’s script library.

P Interpret the XML data structures used by JUNOS devices.

P Communicate with JUNOS through the JUNOS XML API.

P Ease how you write XML data structures using the SLAX XML
abbreviated format.

P Read SLAX scripts and understand the operations they perform.

P Create your own customized operation scripts.

 iii

What You Need to Know Before Reading

Before reading this booklet, you should be familiar with the basic
administrative functions of JUNOS Software. This includes the ability
to work with operational commands and to read, understand, and
change the JUNOS configuration. The Day One booklets of the JUNOS
Software Fundamental series, as well as the training materials available
on the Fast Track portal, can help to provide this background (see the
last page of this booklet for these and other references).

Other things that you will find helpful as you explore the pages of this
booklet:

P Having access to a JUNOS device while reading this booklet is very
useful. A number of practice examples which reinforce the concepts
being taught are included. Most of these examples require creating
or modifying a script and then running it on a JUNOS device in
order to see and understand the effect.

P The best way to edit SLAX scripts is to use a text editor on your
local PC or laptop and then to transfer the edited file to the JUNOS
device using a file transfer application. Doing this requires access to
a basic ASCII text editor on your local computer as well as software
to transfer the updated script using scp or ftp.

P While a programming background is not a prerequisite for using
this booklet, a basic understanding of programming concepts is
beneficial.

Supplemental Appendix

If you’re reading the print edition of this booklet, there’s another 20+
pages in the PDF supplemental appendix. Go to www.juniper.net/
dayone and download the free PDF version of this booklet, Day One:
Applying JUNOS Automation. The supplemental appendix is included
in that PDF edition.

How to Give Us Feedback

We’d like to hear your comments and critiques. Please send us your
suggestions by email at dayone@juniper.net.

 iv

Chapter 1

Introducing JUNOS Automation

What JUNOS Automation Can Do7

How JUNOS Automation Works .9

XML Basics .12

SLAX Abbreviated XML Format 17

 6 Day One: Applying JUNOS Automation

Computer networks continue to improve - promising higher speeds,
more capabilities, and increased reliability. Yet enhanced functionality
carries with it an increase in complexity, as more technologies have to
coexist and work together. This tradeoff presents a challenge to network
operators who want the advantages of new opportunities but still need to
keep their networks as simple as possible in order to minimize operating
costs and prevent errors.

Deploying JUNOS devices within a network can reduce the level of
complexity that would otherwise be present. This benefit comes from the
ability to use the same operating system to control routers, switches, and
security devices. Instead of having to train staff to support multiple
operating systems for each type of device, only a single operating system
has to be learned and maintained. This decreases the overall complexity
of the network.

As an organization continues to work with JUNOS it will build a knowl-
edge reservoir of best practices and lessons learned. Imagine if this
accumulated experience could always be available to help the network
run optimally. Imagine if every configuration change, every system event,
and every troubleshooting step could take advantage of the organiza-
tion’s gathered knowledge and make use of it. Enter JUNOS automation.
It allows organizations to automate their pooled intelligence through
scripts that automatically control JUNOS devices according to the
desired best practices.

JUNOS automation is a standard part of the JUNOS Software operating
system available on all JUNOS platforms, including routers, switches,
and security devices. This booklet introduces JUNOS automation and
demonstrates how to take advantage of its potential. It also explains how
to use operation scripts, one type of JUNOS automation script.

JUNOS automation enables an organization to embed its wealth of
knowledge and experience of operations directly into its JUNOS devices:

n Business rules automation: compliance checks can be enforced.
Change management can help to avert human error.

n Provisioning automation: complex configurations can be
abstracted and simplified. Errors can be automatically corrected.

n Operations automation: customized commands and outputs can
be created to streamline tasks and ease troubleshooting.

n Event automation: responses can be pre-defined for events
allowing the device to monitor itself and react as desired.

 Chapter 1: Introducing Automation 7

What JUNOS Automation Can Do

JUNOS automation is a powerful suite of tools for automating the
methods and procedures of operating a network. Automation can not
only save your team time, it also helps to establish high performance
operation of the network and to manage greater scale in the network
by simplifying complex tasks.

The tool sets let you automate a majority of the commands used
within the JUNOS command-line, further control the commit process,
as well as automate the response to defined events. JUNOS includes
three types of automation scripts, each providing different types of
functionality for automation:

n Operation (op) scripts instruct JUNOS of actions to take when-
ever the script is called through the command-line or by another
script.

n Event scripts instruct JUNOS of actions to take in response to an
occurrence in a monitored set of events.

n Commit scripts instruct JUNOS of actions to take during the
commit process of activating configuration changes.

MORE? To see examples of each type of script go to the online script library at
www.juniper.net/scriptlibrary.

Operation (Op) Scripts

This booklet helps you to write your first op scripts. Op scripts are
used in operational mode to create custom commands and to change
configurations. They execute whenever called upon, either by an
operator who simply enters a command request in the CLI or from
within an event script (see below).

Tailor made show commands are the most common form of op scripts.
An op script written for this objective gathers data from multiple show
commands, processes it, and then outputs the desired information to
the screen.

Another common form of op script is an automated configuration
change. These op scripts perform controlled configuration changes
based on supplied input from command line arguments, interactive
prompts, or JUNOS show commands. The advantage of this approach

is that you can code the structure of the change into the script itself.
This mitigates human error and allows users with less expertise the
ability to change the configuration in controlled ways.

You can also create op scripts to iteratively narrow the potential cause
of network problems. These scripts run an operational mode command,
process the output, determine the next appropriate action, and repeat
the process until the source of the problem is determined and reported
to the CLI. Op scripts can thereby give operators a running start that is
immensely valuable during troubleshooting.

By uncovering the root cause, or at least helping operators to quickly
shorten the list of possible causes, op scripts can speed the time to
resolution. Rapid problem diagnosis is crucial during an outage; it is
not uncommon for an operations team to spend hours diagnosing a
problem that ultimately takes only a few minutes to repair.

Event Scripts

Event scripts are triggered automatically in response to an event (or
events) such as a syslog message, SNMP trap, or timer. You can use
event scripts to gather troubleshooting information in reaction to a
system event, or to automatically change the configuration due to
networking changes or the current time of day.

A typical event script anticipates a scenario such as: “If interface X and
VPN Y go down, execute op script XYZ and log a customized mes-
sage.” By watching for events specified by each organization—warning
parameters that signal potential problems such as a line card crash,
routing failure, or memory overload—operations teams can respond
more quickly with corrective actions.

The event scripts work by processing new events. When the event
process of the JUNOS Software receives events, a set of event scripts
can instruct it to select and correlate specific events. An event script can
also perform a set of actions, such as invoking a JUNOS command or
an op script, creating a log file from the command output, and upload-
ing the file to a given destination.

In this way, operators can better control the series of operations events
from the first leading indicators. Event scripts and op scripts work
together to automate early warning systems that not only detect
emerging problems, but can also take immediate steps to restore normal

 8 Day One: Exploring the JUNOS CLI

 Chapter 1: Introducing Automation 9

operations. By capturing more directly relevant information faster
and taking action, automation scripts can give operations teams
more options earlier.

MORE? After you learn about scripting basics in this booklet, download Day
One: Automating JUNOS Operations to learn more about using op
and event scripts. Check for availability at www.juniper.net/dayone/.

Commit Scripts
Commit scripts instruct JUNOS during the commit process of
configuration changes. When the user performs a commit operation,
JUNOS executes each commit script in turn, passing the candidate
configuration through the defined commit scripts. This allows the
script to fail the commit when user-defined errors are present, to
provide warnings to the committing user on the console, to log
messages to the syslog, or to change the configuration automatically.
As examples, you could use a commit script to enforce physical card
placement and wiring standards, or for a specified logical configura-
tion.

The true power of commit scripts becomes evident when they are
used as macros. Macros greatly simplify the task of complex configu-
rations by taking basic configuration variables as input (such as the
local interface, the VPN ID, and the Site ID), and then using these to
create a complete set of configuration statements (such as a VPLS
interface). By limiting user input only to necessary variables, macros
can ensure consistency in the configuration of a particular interface,
protocol, etc. across the network.

MORE? Download Day One: Automating JUNOS Configuration to learn
more about using commit scripts. Check for availability at www.
juniper.net/dayone.

How JUNOS Automation Works

JUNOS automation scripts provide a sequenced set of steps (or
conditional steps) that JUNOS takes when it processes the script.
JUNOS can process only those scripts specifically included as being a
part of the device configuration. Only specifically permitted users
have the permission to add a script to the device configuration.

 10 Day One: Applying JUNOS Automation

Figure 1.1 outlines the basic flow of script processing. JUNOS stores
scripts in predetermined /var/db/scripts/ directories. JUNOS begins
the processing of a script as a result of a trigger, defined by the type of
script. For example, the trigger for processing all commit scripts is the
commit command in configuration mode. A script engine within the
JUNOS Software then processes the script line-by-line, taking the
specified actions. These actions can include requests to other JUNOS
processes. When the script engine completes the processing of the script,
it sends the results to the output specified by the script.

Figure 1.1 The Flow of Script Processing

NOTE The script engine uses XML (eXtensible Markup Language) to read the
script and communicate with other JUNOS processes. The management
process daemon, known as mgd, of JUNOS Software includes the
primary script engine for processing scripts. The event process daemon,
known as eventd, also includes a script engine for monitoring events.
The Configuration and Diagnostic Automation Guide includes further
details about how JUNOS processes scripts. Find the guide along with
other the JUNOS Software documentation at www.juniper.net/tech-
pubs/.

Script Files
/var/db/scripts

Script
Trigger

Script
Engine

Script
Result

Other JUNOS Processes

Request Response

 Chapter 1: Introducing Automation 11

Scripting Languages

JUNOS automation scripts can be written in either of two scripting
languages: XSLT or SLAX. XSLT is a standardized language designed to
convert one XML document into another. While XSLT can be used to
write JUNOS automation scripts, its original purpose of document
conversion and the fact that it’s written in XML makes it a less comfort-
able choice for most people.

NOTE XSLT stands for eXtensible Stylesheet Language Transformations. SLAX
stands for Stylesheet Language Alternative syntaX.

Juniper developers created SLAX to provide a more user-friendly and
intuitive method in which to write JUNOS scripts than XSLT. SLAX has a
more readable syntax. And, it feels more natural to anyone who is
familiar with reading JUNOS configurations or writing programs in the C
or Perl programming languages.

This booklet focuses solely on teaching the SLAX language, as XSLT
knowledge is not necessary to take advantage of JUNOS automation.

MORE? For information on how to use XSLT to write JUNOS scripts see the
Configuration and Diagnostic Automation Guide within the JUNOS
Software documentation at www.juniper.net/techpubs/.

Using JUNOS Automation with Other Systems

JUNOS automation complements existing network automation systems.
Existing systems offer substantial benefits for change management,
provisioning, and monitoring, but their usefulness is limited when it
comes to detecting and diagnosing configuration and network problems.

Automated change management systems can only identify problems after
the fact, as these packages collect information about system conditions
reactively, by polling the device at predefined intervals. JUNOS automa-
tion is unique in that it provides immediate, on-box problem detection
and resolution. The automation scripts are always available, always alert
to potential issues, and always ready to initiate repair.

TIP Building on the JUNOS automation toolset, Juniper Networks Advanced
Insight Solutions (AIS) introduces intelligent self-analysis capabilities
directly into platforms run by JUNOS Software. AIS provides a compre-
hensive set of tools and technologies designed to enable Juniper Networks
Technical Services with the automated delivery of tailored, proactive

 12 Day One: Applying JUNOS Automation

network intelligence and support services. For more information visit
the Juniper Networks services web page at http://www.juniper.net/us/
en/products-services/technical-services/j-care/.

XML Basics

JUNOS automation scripts communicate with their host device using
the XML language. While it’s somewhat of a dry topic, a basic under-
standing of how XML is used in JUNOS Software is thereby a necessary
first step in learning how to apply JUNOS scripts. This section gives you
just the brief XML background that you need for writing your own
scripts.

Fortunately, the SLAX language greatly simplifies how one reads and
uses XML data structures. The next section explores how SLAX
abstracts the described XML data structures for greater ease of use.

Displaying XML

The defined JUNOS XML API (Application Programming Interface)
provides methods for JUNOS scripts to make requests. These requests
can instruct other JUNOS processes to retrieve particular data or
perform specific actions (see Figure 1.1). JUNOS performs the request-
ed operation and returns the XML results to the script engine for
further processing of the script.

As an example of the XML results that a JUNOS script can use, take a
look at the configuration below expressed in XML mode:

user@JUNOS> show configuration routing-options | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/9.6I0/junos”>
 <configuration junos:commit-seconds=”1238100702” junos:commit-localtime=”2009-03-26
13:51:42 PDT” junos:commit-user=”user”>
 <routing-options>
 <route-distinguisher-id>192.168.1.1</route-distinguisher-id>
 <autonomous-system>
 <as-number>65535</as-number>
 </autonomous-system>
 </routing-options>
 </configuration>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

 Chapter 1: Introducing Automation 13

At first glance this output can appear confusing, but the intuitive
structure makes it simple to understand. Notice the rpc-reply men-
tioned in the first line of output. This shows the output is a reply from
JUNOS providing the requested XML data.

The next line indicates that this is configuration information, and the
following line begins the familiar routing-options configuration
hierarchy. Just as in a normal configuration, the routing-options
hierarchy contains the route-distinguisher-id and autonomous-
system configurations. The XML form uses the same hierarchical
approach, making it easy to understand and simple to compare against
the text configuration.

The output above includes examples of key concepts necessary to
understand how to communicate using the JUNOS XML API:
elements, attributes, namespaces, and nodes.

Try It Yourself: Viewing JUNOS Configuration in XML

Show the following configuration hierarchy levels in XML on a JUNOS device:

(e.g. show configuration system | display xml)

[system]
[interfaces]
[protocols]

Elements

An element is the basic unit of information within an XML data
structure. Elements can contain data such as a text string or number,
or they can contain other elements. An element that contains another
element is the parent of the enclosed child element. Likewise, the inner
element is the child of the containing element. This creates a hierarchy,
which is inherent in the XML structure, similar to the familiar JUNOS
configuration hierarchy.

Elements are written by using start and end tags that provide the
boundaries of the element. A tag contains the element name enclosed
within < > arrows. The output above shows examples of tags, such as
<routing-options>, a tag for the routing-options element. The out-
put lists <routing-options> twice, once as the start tag and once as the
end tag.

 14 Day One: Applying JUNOS Automation

All the text within the start and end tags is an element’s data. Both tags
include the element name; however, the end tag also includes a / before
the name, for example </routing-options>. If an element is empty,
meaning it has no data or child elements, then it can be expressed using
a single tag with a / following the element name, for example <exten-
sive/>.

Here is an example XML configuration hierarchy showing four sepa-
rate elements:

<interfaces>
 <interface>
 <name>ge-0/0/0</name>
 <disable/>
 </interface>
</interfaces>

The <interfaces> element is the parent element of <interface>, which
is the parent element of the <name> and <disable> elements. The <name>
element contains the text data ge-0/0/0. The <disable> element,
however, contains no data or child elements . This is why it is expressed
as an empty tag instead of a start and end tag pair. Yet its presence in
the XML data structure communicates that this interface has been
disabled.

Attributes

Elements can include additional information in the form of attributes.
This information is expressed by including the attribute name and value
within the start tag:

user@JUNOS> show configuration routing-options | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/9.6I0/junos”>
 <configuration junos:commit-seconds=”1238100702” junos:commit-localtime=”2009-03-26
13:51:42 PDT” junos:commit-user=”user”>
<snip>

Both the <rpc-reply> and <configuration> elements have attributes
defined. For example, the <configuration> element has three attri-
butes: junos:commit-seconds, junos:commit-local-time, and junos:
commit-user. Here, the three attributes of the <configuration> element
provide additional details about the last commit.

 Chapter 1: Introducing Automation 15

XML expresses the attribute value by including an equal sign (=)
following the attribute name and providing the value within quotation
marks as shown above. If an element has multiple attributes, they are
included within the start tag separated by spaces.

Namespaces

In the last example the three attributes defined for the <configura-
tion> element all started with the same word. In this case the junos
portion of the attribute name fulfills a specific purpose: it indicates the
namespace of the attribute.

NOTE A namespace prevents confusion between elements using the same
name for different purposes. For example, there could be a commit-
seconds attribute used by multiple computing devices, but when it is
included in the junos namespace it becomes junos:commit-seconds.
What the attribute indicates is now explicitly known.

More precisely, the junos name is actually a placeholder for the full
namespace, which is http://xml.juniper.net/junos/9.6I0/junos.
XML uses a URL for namespaces to ensure each is unique and to
prevent namespace collisions. Fortunately XML and SLAX include
ways to simplify the assignment of URLs to namespaces.

Defining a Namespace

Writing out the full URL-based namespace for every attribute or
element can become overly verbose and tedious. For this reason XML
enables the creation of a placeholder:

<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/9.6I0/junos”>

The single attribute of <rpc-reply> fulfills a special purpose. xmlns
defines a XML namespace. The example declares that the http://xml.
juniper.net/junos/9.6I0/junos namespace is the reference of junos.
This assignment takes effect for the <rpc-reply> element and all of its
child elements.

Using Namespaces in SLAX

JUNOS further simplifies the use of namespaces when working with
SLAX scripts. Rather than using the exact JUNOS version (9.6 in the
above example), JUNOS replaces the version number with a * when
providing the XML data structure to the script. In this way a script can

 16 Day One: Applying JUNOS Automation

be written without reference to the exact namespace used on the
JUNOS device.

With this simplification, the only steps that a SLAX script writer must
follow to use namespaces correctly are:

1. Copy the standard boilerplate (explained in Chapter 2) into the
script.

2. Prepend the namespace placeholder (junos, jcs, xnm, etc.) cor-
rectly to the element or attribute name (if they have been assigned a
namespace).

Nodes
When SLAX parses a XML data structure it reads it as a tree of nodes.
Every element, attribute, and text data becomes a separate node on the
tree. As an example, Figure 1.2 shows how SLAX would assemble all
the nodes for the following configuration:

<interfaces>
 <interface>
 <name>ge-0/0/0</name>
 <disable/>
 </interface>
</interfaces>

Figure 1.2 SLAX Tree of Nodes Example

Note that each node in Figure 1.2 is in the correct hierarchical position
of the tree. In SLAX, every node tree contains a root node at its base,
representing data to computers, with its syntax expressed in Figure 1.2
as /. Next the four element nodes appear according to their hierarchy.
Lastly, a text node holds the text contents of the <name> element. With
the XML data structure expressed in tree form, it is possible to traverse
the tree from parent to child, and from sibling to sibling, in order to
retrieve the necessary data.

interfaces interface/

name

disable

“ge-0/0/0”

 Chapter 1: Introducing Automation 17

MORE? For more details on XML you can look at http://www.w3schools.com/
xml/. It is one of many online XML tutorials.

SLAX Abbreviated XML Format

Compare this XML data structure:

<interfaces>
 <interface>
 <name>ge-0/0/0</name>
 <disable/>
 </interface>
</interfaces>

To the actual configuration it represents:

interfaces {
 interface ge-0/0/0 {
 disable;
 }
}

The XML data structure is harder to read and more time-consuming to
write. While XML’s structure makes it very consistent and useful for
representing data, its syntax is not ideal to read or manually enter. This
stems from the necessity of using start and end tags for each element.

The SLAX language therefore uses an abbreviated format to describe
XML data structures. This format is more congruent with the JUNOS
configuration style:

<interfaces> {
 <interface> {
 <name> “ge-0/0/0”;
 <disable>;
 }
}

This is the same XML data structure as shown in the XML format
example, yet in SLAX it appears more similar to the actual configura-
tion it represents. Note one difference between the actual configuration
text and its representation in the SLAX abbreviated XML format: the
identifier for configuration objects appears as the first child element
within an element called <name>, rather than appearing in the same
configuration line.

 18 Day One: Applying JUNOS Automation

As an example, ge-0/0/0 is in line with interface in the normal
configuration text, yet it is assigned to the <name> child element of the
<interface> element in the SLAX format.

To achieve the simplification, the SLAX abbreviated XML format
uses only the start tags; the end tags are no longer required. Instead,
SLAX expresses the boundary of the element in one of three ways:

n If the element contains child elements then curly braces { }
contain the child elements (the same method used to indicate
hierarchy in JUNOS).

n If the element contains data then the data is written within
quotation marks (“ ”) and the line is terminated with a semi-
colon (;) (similar to JUNOS configurations).

n A single start tag terminated by a semi-colon (;) represents
empty elements with no children or text data.

Try It Yourself: Writing XML in the SLAX Abbreviated Format

Rewrite the following configuration using the SLAX abbreviated XML format:

system {
 host-name r1;
 login {
 message “Unauthorized access prohibited.”;
 }
}

Chapter 2

Writing Your First Script

Hello World .20

SLAX Syntax Rules .21

Understanding the Result Tree .23

Importing Script Code .25

The Main Template .25

Using the Op Script Boilerplate .25

 20 Day One: Applying JUNOS Automation

JUNOS automation scripts can automate many operation steps in
JUNOS. This chapter provides the first glimpse of how to write a
script, load it on a JUNOS device, and enable it in the configuration.

Hello World
The functionality of this first op script is very simple: when run, it
displays the text “Hello World!” on the console. To run the op script,
an administrator simply enters the script file name at the CLI prompt.
The complete code for the Hello World script follows:

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {
 <output> “Hello World!”;
 }
}

Here is the output shown by the Hello World op script:

user@JUNOS> op hello-world
Hello World!

How to load and run the Hello World op script:

To run this op script on a device, take the following steps.

1. Save the code into a text file called hello-world.slax.

ALERT! All SLAX script filenames must end with the .slax extension.

2. Copy the script file into the /var/db/scripts/op directory on the
JUNOS device.

3. Before you can run the script, you must enable it within the JUNOS
configuration. Explicit configuration is a security precaution that
prevents unauthorized scripts from being executed on the JUNOS
device. Only super-users, users with the all permission bit, or users
that have specifically been given the maintenance permission bit are
permitted to enable or disable JUNOS scripts in the configuration.
The command to enable an op script is set system scripts op file
<filename>. So for the Hello World op script, enter:

set system scripts op file hello-world.slax

 Chapter 2: Writing Your First Script 21

NOTE Devices with multiple routing-engines must have the script file copied
into the /var/db/scripts/op directory on all routing-engines. The
script must be enabled within the configuration of each routing-engine
as well. Typically this configuration is done automatically through con-
figuration synchronization. However, if the configurations are not
synched, then the configuration must be entered manually into all
routing-engines.

4. Execute the script with the op command followed by the script file
name (without the .slax filename extension). For example:

user@JUNOS> op hello-world

SLAX Syntax Rules
The SLAX scripting language has a set of basic syntax rules. Chapter 1
provided some of these rules in the section on SLAX abbreviated XML
format. Since JUNOS scripts contain XML elements and data struc-
tures, scripts must follow these relevant formatting rules.

The rest of the SLAX syntax rules are very similar to the JUNOS
configuration syntax rules. For example, code blocks and line termina-
tion within SLAX scripts are done in the same manner as in JUNOS
configuration, and the formatting of strings and comments in SLAX is
also comparable to JUNOS.

Code Blocks
A JUNOS configuration indicates hierarchy through the use of curly
braces { }:

interfaces {
 interface ge-0/0/0 {
 disable;
 }
}

In the above example, the interfaces configuration hierarchy contains
the interface ge-0/0/0 hierarchy, which contains disable. The entire
hierarchical relationship is clearly defined with the use of curly braces.

The SLAX scripting language follows a similar style, enclosing distinct
code blocks within curly braces to indicate their hierarchy and bounds.
Review this portion of the configuration from the Hello World script:

match / {
 <op-script-results> {
 <output> “Hello World!”;
 }
}

 22 Day One: Applying JUNOS Automation

Curly braces bound the match / code block. This provides a clear
boundary indicating exactly where the code block starts, where it
stops, and what code it contains.

Line Termination
The following lines end with a semi-colon:

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

Each of these is an example of an individual statement. Individual
statements are not part of a code-block. SLAX terminates individual
statements with a semi-colon (the same as in JUNOS configuration).
The semi-colon tells the script engine in JUNOS that the end of the line
has been reached.

String Values
A string is a sequence of text characters. “Hello World!”and “../
import/junos.xsl” are examples of strings in the Hello World script.
Scripts must always enclose string values within quotes. In this way the
script engine knows that the text is intended as a string value.

This method is very similar to how JUNOS handles strings in a con-
figuration. The difference: in a JUNOS configuration, quotation
marks are generally only required when the text includes a space; while
in a SLAX script, quotation marks are always required whether a space
is present or not.

NOTE SLAX allows the use of either single quotes ‘String Value’ or double
quotes “String Value”, but the character used to open the string must
also be used to close it.

Adding Comments
The regular use of comments within a script is very helpful and highly
recommended. Comments provide insight into the logic of the script
and the expectations it is working under. This can be beneficial to those
that did not write the script and are unfamiliar with the design deci-
sions that influenced it. Comments can also be useful for the script
author who might need to revise the script months later.

Comments in SLAX scripts are written within the delimiters /* and */
such as:

 /* This is a comment. */

 Chapter 2: Writing Your First Script 23

This syntax is similar to how comments appear in a JUNOS configura-
tion when configuration commands are annotated.

NOTE In JUNOS comments are indicated in two ways, either within /* and */
or following a #. SLAX scripts only support the delimiters /* and */.

Comments can be included anywhere within your script:

match / {
 <op-script-results> {
 /* Display this string on the console */
 <output> “Hello World!”;
 }
}

Create multi-line comments by entering the terminating */ on a
separate line from the starting /*:

/*
 * This is a simple script which outputs “Hello World!” to the console.
 */

Try It Yourself: Adding Comments to the Hello World Script

Make the following modifications to the Hello World script:

1. Add a multi-line comment at the beginning that describes the purpose of the script.

2. Add an additional comment before the <output> “Hello World!”; line to state that it is
writing to the console.

After making the two modifications, replace the prior version of hello-world.slax on your
JUNOS device with the new version. Execute the script again and verify that the new comments
did not change the operation.

Understanding the Result Tree

JUNOS automation requires a communication method so that scripts
can instruct JUNOS to perform desired actions. For example, the Hello
World script causes JUNOS to display “Hello World!” on the console.
In the Hello World script, the <output> element within the result tree
provides this request.

Using the result tree is the simplest way for a script to provide instruc-
tions for JUNOS. The result tree is a XML data structure created by
the processing of the script and delivered to the script engine after the
script terminates. During operation, the script specifies the XML
elements to include in the result tree. Once the script has finished,
JUNOS follows the instructions of the completed result tree.

 24 Day One: Applying JUNOS Automation

Writing to the Result Tree
Writing to the result tree within a script is easy. XML elements are
simply embedded within the SLAX script in the abbreviated XML
format. When the script engine arrives at a line that consists of a XML
element it automatically attaches that element into the result tree.

NOTE Some XML elements take effect within the script itself and are not
written into the result tree. These are special purpose elements such as
<xsl:sort> and <xsl:message>. They constitute the exception to the
rule; typically all embedded XML elements are written to the result tree.

Processing these lines creates the result tree in the Hello World script:

match / {
 <op-script-results> {
 <output> “Hello World!”;
 }
}

<op-script-results> is an XML element with a child element of
<output>. When the script engine begins executing the script it reaches
this XML data structure, recognizes these as XML elements, and writes
them to the result tree as:

<op-script-results> {
 <output> “Hello World!”;
}

The parent element in the example above is <op-script-results>. This
is always the top-level element in an op script result tree. This element
indicates to JUNOS that instructions are coming from an op script.
There is no action performed by the <op-script-results> element, it
simply contains the child elements. It is the child elements that provide
instructions for JUNOS to process.

The <output> element is the most common element found in the result
tree of op scripts. As the name implies, it outputs an associated string.
Specifically, it instructs JUNOS to display the string to the console
followed by a line-feed. A script can include multiple <output> elements,
with each string appearing on a different line:

<op-script-results> {
 <output> “Hello World!”;
 <output> “I’m Home!”;
}

Results in the following output:

Hello World!
I’m Home!

If you wish to include line-
feeds within your text string
then use the \n escape
character: <output> “First
Line\nSecond Line”;

 Chapter 2: Writing Your First Script 25

Try It Yourself: Adding Additional Output to the Hello World Script

Modify the Hello World script by adding two additional lines of output to the console above the
“Hello World!” string.

Replace the prior version of hello-world.slax on your JUNOS device with the changed version.
Execute the script again and see the effect the new <output> elements have on the script output.

Importing Script Code
The Hello World script example includes the following line:

import “../import/junos.xsl”;

This specific statement loads all the code from the /var/db/scripts/
import/junos.xsl script file into your op script prior to execution.
Importing allows the use of common code within multiple scripts
without having to copy and paste the actual text from one script to the
other. The junos.xsl script file is included as part of the standard
JUNOS distribution. It contains default templates and parameters.
Your scripts should always include the above line to import this file.

The Main Template
When writing a script, all code and result tree elements must be
included within a code structure known as a template. When the script
engine in JUNOS first executes a script, it searches the script file for the
main template. The script engine then begins executing the instructions
and writing the included result tree elements. For op scripts, the main
template is match /.

Note in the Hello World script below: the presence of the match /
template, the curly braces { } enclosing the code block, and the XML
elements to add to the result tree included within the block.

match / {
 <op-script-results> {
 <output> “Hello World!”;
 }
}

Using the Op Script Boilerplate

When writing JUNOS op scripts, work from the standard boilerplate:

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;

For information on the
contents of junos.xsl see
The Configuration and Diagnostic
Automation Guide at www.
juniper.net/techpubs/.

 26 Day One: Applying JUNOS Automation

ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {

 /* Your script code goes here */

 }
}

The boilerplate simplifies script writing by providing the needed name-
space URLs (see Chapter 1) along with other components. Copy and
paste the boilerplate and add your script code within it. The boilerplate
includes the following components:

n version: while version 1.0 is currently the only available version of the
SLAX language, the version line is required at the beginning of all
JUNOS scripts.

n ns: a ns statement defines a namespace prefix and its associated
namespace URL. The following three namespaces must be included in all
JUNOS scripts:

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

It is easiest to just copy and paste these namespaces into each new script
as part of the boilerplate rather than trying to type them out by hand.

n import: the import statement is used to import code from one script
into the current script. As the junos.xsl script contains useful default
templates and parameters, all scripts should import this file. The import
“../import/junos.xsl”; line from the boilerplate is all a script needs to
accomplish this.

n match /: this code block is the main template of the op script. In the
standard boilerplate it includes the <op-script-results> result tree
element.

Try It Yourself: Writing Your Own Script Using the Boilerplate

Using the configuration boilerplate, create a new op script that outputs three separate lines of text
to the console. Copy this script to your JUNOS device and enable it. Now you can verify it by
executing it from the command-line.

The boilerplate includes the
<op-script-results>
element to simplify writing of
op scripts. SLAX statements
can be included within the
<op-script-results>
code block without interfering
with the created result tree.
The script engine can
differentiate between state-
ments to execute and XML
elements to add to the tree.

Chapter 3

Understanding SLAX Language

Fundamentals

Variables .28

Operators .31

Parameters .36

Command-line Arguments .37

Conditional If Statements .40

Named Templates .43

Functions .49

 28 Day One: Applying JUNOS Automation

The last chapter covered the syntax rules of the SLAX scripting
language as well as the boilerplate used when creating a new op script.
It also explored the Hello World op script and demonstrated how to
write text to the console. This chapter digs deeper into the fundamen-
tals of the SLAX language and further explains its capabilities.

1. The jcs, xnm, and junos namespaces are reserved. Do not use any of
these namespaces when creating variables, parameters, elements, or
templates.

2. Do not start any names with “junos”.

While the following serve as guidelines, they are also best practices that
let your scripts conform to JUNOS configuration naming standards as
well as to official JUNOS scripts.

1. Write variables, parameters, elements, and templates entirely in
lowercase.

2. Separate multiple words with a dash (-), for example: gig-
interface.

Variables

In the SLAX language, a variable is a reference to an assigned value.
The variable name is used within the script, and the script engine
substitutes the value in its place when it executes the script. SLAX
variables are immutable; they cannot be changed. This might seem
strange to those who are accustomed to other programming languages,
but in SLAX variables always refer to the value to which they were first
assigned.

Data Types

There are five data types defined in the SLAX scripting language:

n string: a sequence of text characters, for example “Hello World!”.

n number: numbers are stored as floating points so decimals are
permitted.

n boolean: used for conditional operations; evaluated as either true
or false.

n result tree fragment: a portion of the result tree. By default, all
XML elements that are embedded in a script are written to the result
tree. It is possible, however, to redirect this XML data to a variable
instead. The variable stores the data as an unparsed XML data

 Chapter 3: Understanding SLAX Language Fundamentals 29

structure, as such no additional data can be extracted from it. The
script can only use the unparsed data to write to the result tree later or
to convert to a node-set or string.

n node-set: an unordered set of XML nodes. A node-set consists of
parsed XML data, so information can be extracted from it. Typically,
node-sets are the result of a query to JUNOS for information, a
location path, or a converted result tree fragment.

Declaring Variables

Variables are all declared using the var statement. Variable names are
always preceded by a dollar sign:

var $example-string = “Example”;

The data type of the variable is automatically determined based on the
assigned value. Here are examples of how to declare variables in each
of the different data types:

n string: var $example-string = “Example”;

n number: var $example-number = 15;

n boolean: var $example-boolean = (15 == 15);

n result tree fragment:

var $example-rtf = {
 <system> {
 <host-name> “R1”;
 }
}

n node-set: var $example-node-set = jcs:invoke(“get-interface-
information”);

BEST PRACTICE To allow your scripts to be compatible with future JUNOS script
functionality, always follow these rules when naming variables,
parameters, elements, and templates.

Using Variables

Once declared, a script can use the variable to reference the represent-
ed value. When using variables their full case-sensitive name must be
used, including the preceding dollar sign:

match / {
 <op-script-results> {
 var $router-name = “R1”;

 30 Day One: Applying JUNOS Automation

 <output> $router-name;
 }
}

The above example shows the main template of an op script. This
script declares a variable of $router-name with a string value of “R1”
assigned to it. The script then includes this variable as the content of
the <output> result tree element that writes “R1” to the console.

Scope of Variables

Variables are only usable within a limited scope. A scope is the code
hierarchy in which a variable is declared. Each variable can be used
within its own scope, as well as in other specific scopes that also fall
within the declared scope.

The following are the main types of scopes for variables:

n global variable: refers to any variable declared outside of all
templates. Global variables can be referenced anywhere within the
script.

n template variable: refers to variables defined within templates, such
as the main template, and have a scope of only their own template.
Template variables cannot be used outside of their own template.

NOTE The script code can declare variables of the same name both globally
and within a template, but only one or the other is usable at a time.
The template variable overrides the global variable within the template
that assigns the template variable.

More specific scopes are also possible. If a variable is declared within
the code block of either an if or for-each statement (which are
discussed later), then it is only usable within that code block; it cannot
be referenced outside of it.

Global Variables

Here is a variation of the Hello World script where the string is defined
as a global variable:

 Chapter 3: Understanding SLAX Language Fundamentals 31

/* hello-world.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

/* This is a Global Variable */
var $first-string = “Hello World!”;

match / {
 <op-script-results> {

 /* This is a variable with template scope */
 var $second-string = “Goodbye World!”;

 /* Output both variables to the console */
 <output> $first-string;
 <output> $second-string;
 }
}

In the above example, both the global variable $first-string and the
template variable (sometimes called a local variable) $second-string
are available for use within the main template. However, if additional
templates are added to the script (as is discussed later in this chapter),
only the global variable $first-string can be used within these.

NOTE Notice that the var statement is declared within the <op-script-
results> XML element. The SLAX processor is able to determine that
this is a line of script code rather than an XML element, and it does not
try to write it to the result tree. It is common to interleave SLAX code
and result tree elements in this manner within JUNOS scripts.

Operators

SLAX contains a wide variety of operators to enhance script operation.
These operators enable the script to perform mathematical operations,
compare values, convert data, and create complex expressions. Table
3.1 summarizes the operators available in SLAX.

 32 Day One: Applying JUNOS Automation

Table 3.1 SLAX Operators

Name ...
Code

Example ...
Explanation

Addition
+

var $example = 1 + 1;

Assigns the value of 1 + 1 to the $example variable.

Subtraction,
Negation
-

var $example = 1 - 1;

Assigns the value of 1 - 1 to the $example variable and changes the sign of a
number from positive to negative or from negative to positive.

Multiplica-
tion
*

<output> 5 * 10;

Results in the value 50 being written to the console.

Division
div

<output> $bit-count div 8;

Divides the bits by eight, returning the byte count, and displays the result on
the console (requires that the variable $bit-count has been initialized).

Modulo
mod

<output> 10 mod 3;

Returns the division remainder of two numbers. In this example the expres-
sion writes 1 to the console.

Equals
 ==

$mtu == 1500

If the value assigned to $mtu is 1500 then the expression resolves to true,
otherwise it returns false (requires that $mtu has been initialized).

Does not
equal
!=

$mtu != 1500

If $mtu equals 1500 then the result is false, otherwise it returns false (re-
quires that $mtu has been initialized)

Less than
<

$hop-count < 15

Returns true if the left value is less than the right value, otherwise it returns
false (requires that $mtu has been initialized).

Less than or
equal to
<=

$hop-count <= 14

Returns true if the left value is less than the right value or if the two values
are the same, otherwise it returns false (requires that $mtu has been initial-
ized).

Greater than
>

$hop-count > 0

Returns true if the left value is greater than the right value, otherwise it
returns false (requires that $mtu has been initialized).

 Chapter 3: Understanding SLAX Language Fundamentals 33

Greater than
or equal to
>=

$hop-count >= 1

Returns true if the left value is greater than the right value or if they are the
same, otherwise it returns false.

Parenthesis
()

var $result = ($byte-count * 8) + 150;

Used to create complex expressions. Parenthesis function the same way as in
a mathematical expression, with the expression within the parenthesis
evaluated first. Parenthesis can be nested with the innermost set of parenthe-
sis evaluated first, then the next set, and so on.

And
&&

$byte-count > 500000 && $byte-count < 1000000

The && (and) operator combines two expressions to get one result. If either
of the two expressions evaluates to false then the combined expression evalu-
ates to false.

Or
||

$mtu-size != 1500 || $mtu-size > 2000

The || (or) operator combines two expressions to get one result. If either of
the two expressions evaluates to true then the combined expression evaluates
to true.

String
concatenation
_

var $combined-string = $host-name _ “ is located at “ _ $location;

The underscore _ is used to concatenate multiple strings together (note that
strings cannot be combined using the + operator in SLAX). In the example if
$host-name is “r1” and $location is “HQ” then the value of $combined-
string is “r1 is located at HQ”.

Node-Set
Union
|

var $all-interface-nodes = $fe-interface-nodes | $ge-interface-
nodes;

The | operator creates a union of two node-sets. All the nodes from one set
combine with the nodes in the second set. This is useful when a script needs
to perform a similar operation over XML nodes that are pulled from mul-
tiple sources.

Result Tree
Fragment to
Node-Set
Conversion
:=

var $new-node-set := $rtf-variable;

A result tree fragment contains an unparsed XML data structure. It is not
possible to retrieve any of the embedded XML information from this data
type, so the := conversion operator was created. This operator converts a
variable from a result tree fragment into a node-set. The script can then tell
JUNOS to search the node-set for the appropriate information and extract it.
Only JUNOS 9.2 and beyond supports this operator (see note next page).

 34 Day One: Applying JUNOS Automation

NOTE There is no operator for “not” as there is in other programming
languages. Instead, there is a not() function that returns the opposite
boolean value of its argument.

NOTE The := operator is only supported in JUNOS 9.2 and beyond. If you
are using an earlier version you can use the node-set() extension
function to convert a result tree fragment into a node-set. The node-
set() function requires that the “http://xmlsoft.org/XSLT/namespace”
namespace be declared, and the assigned prefix prepended to the
function name. For example, if you assign the namespace to ext (ns
ext = “http://xmlsoft.org/XSLT/namespace”;), then you call the
function as ext:node-set(): var $node-set-variable = ext:node-
set($rtf-variable);

Data Type Conversion

Typically it is not necessary to explicitly convert from one data type
into another. The primary exception to this rule is converting from
result tree fragment to node-set, but otherwise most conversions occur
automatically.

When the script engine comes to an operator or a statement, and the
associated date type is not of the correct type, the script engine at-
tempts to automatically convert it. As an example, when the addition
operator is encountered, the two arguments are converted into num-
bers.

The conversion process works in the following way, based on the
original data type:

n string: strings which consist entirely of appropriate characters for
numeric content are converted into the equivalent number, otherwise
they are converted to NaN (not a number). When converting to
boolean, empty strings convert to false, and non-empty strings convert
to true.

n number: numbers are converted to strings by converting each digit
into the appropriate character. The numeric value zero is converted to
the boolean value false, all other numeric values are converted to the
boolean value true.

n boolean: when converted to strings, booleans become either “true”
or “false.” The boolean value false is converted to the numeric value
of 0. True is converted to the numeric value of 1.

 Chapter 3: Understanding SLAX Language Fundamentals 35

n node-set: a node-set is converted into a string by returning the
string value of the first node in the node-set. The string value is the text
contents of the node as well as all its child nodes. A node-set converts
into a number in a similar fashion. Empty node-sets are converted to
the boolean value of false, node-sets with one or more nodes are
converted to the boolean value of true.

n result tree fragment: result tree fragments are converted to strings
by returning all the text content within the XML data structure.

The following script example shows the automatic conversion process
where a string is converted to the needed number data type:

/* convert.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

match / {
 <op-script-results> {

 /* String variable */
 var $numeric-string = “-700”;
 /* Number variable */
 var $number = 100;

 /* Output the addition of the two variables to the console */
 <output> $numeric-string + $number;
 }
}

When executed, this script displays the number -600 on the console.
The script engine automatically converts the string “-700” within the
script into the equivalent number -700. The result of the expression of
-700 + 100 is then shown.

Try It Yourself: Working with Operators

Create a new script including two variables that are assigned numeric values. Add a third
variable and assign it the product of the first two variables. Display the value of the third
variable on the console.

 36 Day One: Applying JUNOS Automation

Parameters

Parameters are variables whose value is assigned by an external source.
Other than their declaration they share the same rules as variables, and
you can use them in a similar way.

Default Parameters

Every script begins with six parameters predefined, which are declared
within junos.xsl. When junos.xsl is imported as part of the standard
boilerplate, these parameters are imported as well and can be used within
the script.

The default parameters provide commonly-used information for scripts:

n $product: contains the name of the local JUNOS device model

n $user: is assigned to the name of the user that executed the script

n $hostname: stores the local hostname of the JUNOS device

n $script: contains the name of the script that is currently executing

n $localtime: stores the local time when the script was executed using
the following format: Tue Jan 20 14:07:33 2009

n $localtime-iso: provides a different format of local time: 2009-01-20
14:07:33 PST

NOTE In JUNOS versions prior to 9.6 $localtime-iso is named $localtime_iso.
The old name format will continue to be supported in 9.6 in a deprecated
fashion.

Global Parameters

Parameters whose value is set by JUNOS at script initialization must be
defined as global parameters. The default parameters listed above are
examples of global parameters. To declare a global parameter, use the
param statement and provide a name for the parameter. As with variables,
parameter names always require a preceding “$”.

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;

 Chapter 3: Understanding SLAX Language Fundamentals 37

ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

/* This is a global parameter */
param $interface;

A script can assign a default value to a global parameter. This provides
a fallback value in the event that JUNOS does not give a value to the
parameter. If no default value is declared and none is assigned during
script processing, then the parameter defaults to an empty string. Here
is an example where the $interface parameter defaults to “fxp0”:

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

/* This is a global parameter with a default value */
param $interface = “fxp0”;

Command-line Arguments

Global parameters within op scripts are typically used to pass com-
mand-line arguments from JUNOS to the op script. This technique
greatly increases the versatility of a script, as scripts can be written to
respond differently based on the arguments provided.

Creating Command-line Arguments

Command-line arguments are always expressed as name and value
pairs. When a user executes an op script and includes command-line
arguments, JUNOS searches the script for a global parameter of the
same name (excluding the dollar sign $) and assigns the value from the
command-line argument to the matching parameter.

As an example, assume a user entered the following command:

user@JUNOS> op show-interface interface fe-0/0/0.0

Based on the command-line entry, JUNOS searches for a global para-
meter named $interface. If the parameter is present, then JUNOS
assigns it the string value of “fe-0/0/0.0”.

Here is an example of a script that utilizes command-line arguments:

 38 Day One: Applying JUNOS Automation

/* combine-strings.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import «../import/junos.xsl»;

/* Command-line arguments */
param $string1;
param $string2;

match / {
 <op-script-results> {

 /* Output the command-line arguments to the console */
 <output> $user _ «: Here are your combined strings: « _ $string1 _ $string2;

 }
}

This script shows an example of both default parameter use and
command-line arguments. $user is a default parameter assigned to the
name of the user running the script. $string1 and $string2 are global
parameters which are populated through command-line arguments.
Assume the script executed using the following command-line:

user@JUNOS> op combine-strings string1 “Hello” string2 “ World!”
user: Here are your combined strings: Hello World!

As the example shows, the strings “Hello” and “ World!” were prop-
erly assigned to the $string1 and $string2 parameters and the $user
parameter correctly identified the username of “user”.

Op Script Help

Remembering command-line argument names can be burdensome.
It is more user-friendly to provide a quick reference as to which
command-line arguments are available. JUNOS provides a way for op
scripts to create additions to the JUNOS CLI help system that remind
users which arguments are available for the op script.

By default, JUNOS users can enter a ? after a command to see the
available completions. If a ? is entered following the op script com-
mand the following is displayed:

user@JUNOS> op combine-strings ?
Possible completions:
 <[Enter]> Execute this command
 <name> Argument name

 Chapter 3: Understanding SLAX Language Fundamentals 39

 detail Display detailed output
 | Pipe through a command

This display does not give any hint of what command-line arguments
can be provided to the script. The solution is to use a special purpose
global variable named $arguments within the op script. JUNOS
automatically looks for this variable when building the help contents
for an op script. By following the format of the XML data structure, it
is possible to add command-line arguments to the help text.

The structure required for how it uses the $arguments variable is:

<argument> {
 <name> “ArgumentName”;
 <description> “Argument description”;

}

Take a look at the edited script to see how it is used:

/* combine-strings.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import «../import/junos.xsl»;

/* This variable defines the CLI help text */
var $arguments = {
 <argument> {
 <name> «string1»;
 <description> «The first string»;
 }
 <argument> {
 <name> «string2»;
 <description> «The second string»;
 }
}

/* Command-line arguments */
param $string1;
param $string2;

match / {
 <op-script-results> {

 /* Output the command-line arguments to the console */
 <output> $user _ «: Here are your combined strings: « _ $string1 _ $string2;

 }
}

 40 Day One: Applying JUNOS Automation

Now, notice the difference when a user invokes the JUNOS CLI help:

user@JUNOS> op combine-strings ?
Possible completions:
 <[Enter]> Execute this command
 <name> Argument name
 detail Display detailed output
 string1 The first string
 string2 The second string
 | Pipe through a command

Try It Yourself: Working with Command-line Arguments

Create a new script with a command-line argument that accepts a number from the user. Include
the $arguments global variable so that the CLI help output includes the command line argument.
Perform a mathematical operation on the command-line argument and output the result to the
console. Execute the op script a few times, with a different number provided on the command-
line to verify that the result changes.

Conditional If Statements

The script examples to this point have been fairly basic. Conditional
code execution allows more flexible functionality with the SLAX if
statement. Using the if statement instructs the script engine to execute
segments of code only when certain conditions are met. This means
that scripts can react to values instead of only operating on them.

If Statements

The if statement consists of two parts: a boolean expression and a
conditional code block:

if($mtu == 1500) {
 <output> “Jumbo Frames are not enabled”;
}

In the above example the boolean expression is $mtu == 1500. It is
expressed within parenthesis immediately following the if statement.
When the expression evaluates to true then the conditional code block
of the if statement is executed. When the expression evaluates to false
then the script engine skips to the end of the statements code block and
continue processing from that point. As an example, if the $mtu
variable is assigned to the value 1500 then <output> “Jumbo Frames
are not enabled” is written to the result tree, otherwise this string does
not appear in the console output.

 Chapter 3: Understanding SLAX Language Fundamentals 41

Else If and Else Statements

Additional possibilities can be expressed by adding else if and/or else
statements:

if($interface == “fxp0”) {
 <output> “Out of Band Management”;
}
else if($interface == “lo0”) {
 <output> “Loopback Interface”;
}
else {
 <output> “Other”;
}

In this case, the script engine checks each boolean expression sequen-
tially. The first expression that evaluates to true has its code block
executed. If neither the if nor the else if evaluate to true, then the else
code block is executed (when present). In all cases, the script engine
executes a maximum of one conditional code block. If multiple boolean
expressions evaluate to true, the script engine only applies the first.

Conditional Operation Example

Here is a script that shows conditional operation. It outputs the value of
one default parameter, with the desired parameter being chosen through
a command-line argument:

/* output-parameter.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import «../import/junos.xsl»;

/* This shows the parameter argument in the CLI help output */
var $arguments = {
 <argument> {
 <name> «parameter»;
 <description> «Enter name of parameter, e.g. $user»;
 }
}

/* Command-line argument */
param $parameter;

match / {
 <op-script-results> {

 42 Day One: Applying JUNOS Automation

 /* Output the selected parameter to the console */
 if($parameter == «$user») {
 <output> «$user = « _ $user;
 }
 else if($parameter == «$hostname») {
 <output> «$hostname = « _ $hostname;
 }
 else if($parameter == «$product») {
 <output> «$product = « _ $product;
 }
 else if($parameter == «$script») {
 <output> «$script = « _ $script;
 }
 else if($parameter == «$localtime») {
 <output> «$localtime = « _ $localtime;
 }
 else if($parameter == «$localtime-iso») {
 <output> «$localtime-iso = « _ $localtime-iso;
 }
 /* If nothing matches then give this message instead */
 else {
 <output> «This is not a valid default parameter: « _ $parameter;
 }
 }
}

Now let’s see this script in action:

user@JUNOS> op output-parameter parameter $user
$user = user

user@JUNOS> op output-parameter parameter $script
$script = output-parameter.slax

Conditional Variable Assignment

One common use for the if statement is to conditionally assign
variable values. Because a variable’s initially assigned value cannot be
reassigned, it is prudent to be very selective in the value bound to a
variable. This can be done by declaring that a variable must have its
value assigned by an if statement:

var $user-type = {
 if($user == “john”) {
 expr “operator”;
 }
 else if($user == “tom”) {
 expr “admin”;
 }
 else {
 expr “unknown”;
 }
}

 Chapter 3: Understanding SLAX Language Fundamentals 43

Observe the following points in the above code. First, in order to
conditionally assign a variable the entire if statement and any
attached else if and else statements must all be enclosed within
curly braces { }. Second, note the use of a new statement expr, which
is used to write text to the result tree. What the code above actually
does is write a conditionally selected string to the result tree. But this
string is redirected to the $user-type variable making it a result tree
fragment.

Suppose the $user default parameter equals “john” then the “opera-
tor” string is written to the variable $user-type as a result tree
fragment. Having a data type of result tree fragment in place of a
string does not cause any problems because the script engine auto-
matically converts the data type result tree fragment to a string
whenever necessary. Because of this, the script can treat the result tree
fragment as if it was just a normal string variable.

Try It Yourself: Conditionally Assigning Variable Values

Create a new script with a command-line argument that can be set to either + or - , signifying
the mathematical operation to perform. Create a variable that is assigned conditionally, based
on the value of the command-line argument. If the command-line argument is specified as a +
then two values should be added together and assigned to the variable. If the command-line
argument is specified as a - then subtraction should be performed between the two values and
assigned to the variable. Output the result to the console.

Named Templates

The examples provided so far have included only the main template.
This is appropriate given their simple nature. However, as the com-
plexity of a script increases it becomes more advantageous to modu-
larize it by removing some of the functionality from the main template
and placing the code into named templates instead.

A named template is a segment of code which can be called from
anywhere in the script by referring to its name. When this occurs, the
script engine shifts its focus to the code within the selected template
until the script completes. Then the script engine returns to the calling
template and continues processing from where it left the script.

Named templates can greatly enhance scripts in the following ways:

 44 Day One: Applying JUNOS Automation

n code re-use: if a particular code stanza has to be repeated multiple
times throughout your script then it makes sense to place it within a
named template instead. This reduces the size of your script and
simplifies changes.

n self-documentation: named templates with descriptive names
clarify the script actions. A script that is written in this way is simpler
to read and understand than one in which all the operations are
performed in a single large main template.

n recursion: a useful capability of named templates is their ability to
call themselves. By looping through a section of code as many times as
necessary, you can program the script to reach a specific end goal.

Named Templates Syntax

To create a named template you use the template statement, give it a
name, and provide its curly brace enclosed code block:

template example-template {
 /* Template code goes here */
}

To call a template use the call statement and include the name of the
desired template:

call example-template;

Here is an example of a script that uses a named template:

/* show-user.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import «../import/junos.xsl»;

match / {
 <op-script-results> {

 /* Call the display-user template */
 call display-user;

 }
}

/* This template outputs the username to the console */
template display-user {
 <output> «Your user name is « _ $user;
}

 Chapter 3: Understanding SLAX Language Fundamentals 45

In this example, the main template calls the display-user named
template. The called template is then executed, causing the <output>
element to be written to the result tree along with its included string.
Although this is a simple example, it highlights a significant fact about
named templates: any elements that are written to the result tree by a
named template are inserted at the point the template is called.

The main template code writes the <op-script-results> element to
the result tree, but before doing so it calls the display-user template.
The display-user template then provides the instructions to include
the <output> element as a child element of <op-script-results>. The
final result tree sent to JUNOS is:

<op-script-results> {
 <output> “Your user name is “ _ $user;
}

Template Parameters
Template parameters are similar to global parameters – their value is
set outside of the template. However, rather than being set by JUNOS
they are set by the script code when it codes the named template.

To declare template parameters, include them within parenthesis
following the template name:

template display-user($full-name) {
 /* Template code goes here */
}

A default value can be provided in the same way as a global parameter.
If the script code provides no default value, and the template code does
not assign a parameter value, when the template is called, then the
parameter is set to an empty string.

template display-user($full-name = “John Doe”) {
 /* Template code goes here */
}

NOTE An alternate, more verbose, method to declare parameters is to use the
param statement in the lines immediately following the template name.

Parameter values are assigned within the same statement that calls the
named template. The assignments are made by name, not by position:

call display-user($full-name = “Jane Doe”);

This instructs the script engine to call the display-user template and
to give its $full-name parameter a value of “Jane Doe”.

 46 Day One: Applying JUNOS Automation

NOTE An alternate, more verbose, method to assign template parameter
values when calling a named template is to use the with statement in
the following manner:

call display-user {
 with $full-name = “Jane Doe”;
}

This script example shows how to use template parameters:

/* show-time.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

match / {
 <op-script-results> {

 /* Call the display-time template and set the $format parameter */
 call display-time($format = “normal”);
 }
}

/* Output the localtime to the console in either iso (default) or normal format */
template display-time($format = “iso”) {
 if($format == “iso”) {
 <output> “The iso time is “ _ $localtime_iso;
 }
 else {
 <output> “The time is “ _ $localtime;
 }
}

In this example, the display-time template shows the execution time
of the script in either the default ISO format or the normal format.
When the script is called the $format parameter is set to “normal”
resulting in the normal time being displayed on the console.

This op script would be more useful if it allowed the user to choose the
format. The following adds a command-line argument for $format that
lets the user do so:

/* show-time.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

 Chapter 3: Understanding SLAX Language Fundamentals 47

/* This is imported into the JUNOS CLI help text */
var $arguments = {
 <argument> {
 <name> “desired-format”;
 <description> “Choose either iso or normal”;
 }
}

/* Command-line argument */
param $desired-format;

match / {
 <op-script-results> {

 /* Call the display-time template and set the $format parameter */
 call display-time($format = $desired-format);
 }
}

/* Output the localtime to the console in either iso (default) or normal format */
template display-time($format = “iso”) {
 if($format == “iso”) {
 <output> “The iso time is “ _ $localtime_iso;
 }
 else {
 <output> “The time is “ _ $localtime;
 }
}

This modified script includes a new desired-format command-line
argument, allowing the user to choose in which format to display the
time. When the display-time template is called the $format parameter
is set to the value of the $desired-format global parameter.

Here is an example of the output:

user@JUNOS> op show-time display-format iso
The iso time is 2009-05-12 21:01:10 PDT

user@JUNOS> op show-time display-format normal
The time is Tue May 12 21:01:13 2009

NOTE If the calling template includes variables or parameters with the same
name as the parameter of the called template, then the parameter can
be listed without applying an assignment. The script engine automati-
cally sets it to the value of the variable or parameter within the calling
template. For example:

var $display-string = “Example String”;
call show-string($display-string);

 48 Day One: Applying JUNOS Automation

SHORT CUT There is an easier way to write the script on the previous page. Remem-
ber that global parameters and variables are accessible in the entire
script, not just in the main template. This means that it is not necessary
to pass the $format value to the display-time template as a template
parameter. Instead, the display-time template can simply use the
global parameter. The Appendix included in the PDF version of this
booklet provides an example that uses the global parameter. The
script operates in the same manner as the preceding one, but in this
case the named template accesses the global parameter instead of
relying on the main template to pass the format as a template param-
eter.

Redirecting the Result Tree

Creating templates that perform a subset of the script code is useful for
code modularization and self-documentation. Additionally, there are
many times when the calling template can process a desired result from
the called named template. In this scenario, the called template is
designed to perform a specific operation and then return the result.
Named templates (unlike functions in other languages) do not have a
direct mechanism for returning values; however, they are able to write
to the result tree, and it is possible to redirect the result tree to a
variable. Doing this allows called templates to effectively return a
string value to the calling template by writing to the result tree. The
calling template then redirects the result tree output into a variable.
Here is an example of how to do this:

/* show-day.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

match / {
 <op-script-results> {

 /* get-day-of-week returns the day – assign it to $day-of-week */
 var $day-of-week = { call get-day-of-week(); }

 /* Output day string to the console */
 <output> $day-of-week;
 }
}

 Chapter 3: Understanding SLAX Language Fundamentals 49

/* Extract the day of week string from the $localtime global parameter */
template get-day-of-week {
 /* Write the first three characters of the $localtime to the result tree */
 expr substring($localtime, 1, 3);
}

The get-day-of-week template extracts the day string from $localtime
and writes it to the result tree. The calling template can then redirect the
result tree output and store it within a variable instead. As seen in the
script, the syntax used to accomplish this is similar to the syntax used
for conditional variable assignment. In both cases the script requires the
use of curly braces around the code, which writes to the result tree:

var $day-of-week = { call get-day-of-week(); }

By extracting the day string from $localtime and writing it to the result
tree through a named template, the script can call this named template
multiple times. The named template can also be easily copied from one
script into another that requires similar functionality. To retrieve the
day string the script takes advantage of the substring() function within
the get-day-of-week template. The last section of this chapter covers
using functions.

Try It Yourself: Working with Named Templates

Create a new script that contains a named template. The template should write a string to the
result tree. Redirect this into a variable in the calling template and output the variable value to the
console.

Functions
Functions are coded procedures within the script engine. A script can
invoke functions, which take arguments, perform a specific action, and
return the result. This process might sound similar to a named template,
but there are large differences between the two:

n A named template is actual script code, whereas a function is part of
the underlying JUNOS operating system itself.

n Values are provided to named templates through the use of
parameters, which are assigned by name, but functions use arguments
where a precise order is mandated.

n Functions actually return results, whereas named templates can only
write to the result tree and have that result tree fragment redirected to a
variable in the calling function.

 50 Day One: Applying JUNOS Automation

The syntax of functions differs from that of named templates as well.
The call statement is not used; only the function name is provided and
the required arguments specified within parenthesis:

expr substring($localtime, 1, 3);

Functions return values, as an example the substring() function returns a
string. The above code writes the string value to the result tree. The
script code could assign the string value to a variable instead using the
following syntax:

var $day-string = substring($localtime, 1, 3);

Note the difference between assigning a value to a variable from a
named template versus from a function:

var $day-of-week = { call get-day-of-week(); }

String Functions

String functions are used regularly within scripts. Table 3.2 lists some of
the most common and useful of the string functions.

Table 3.2 String Functions

Function Example
Explanation

substring(string-value,
starting-index, length)

var $hello-string = substring(“Hello World”, 1, 5);

Takes a starting string and returns the substring that begins at
the specified index and extends for the given length. This
example results in the $hello-string being assigned the string
value “Hello”. In SLAX, indexes always begin with 1.

substring-before(string-
value-1, string-value-2)

var $hello-string = substring-before(“Hello World”, “ “
);

Returns a substring of string-value-1, but in this case the size
of the substring is determined by the location of string-value-2
within string-value-1. The function returns the entire portion
of string-value-1 up to string-value-2. The example results
in $hello-string being assigned the string value “Hello”.

substring-after(string-
value-1, string-value-2)

var $world-string = substring-after(“Hello World”, “ “);

Returns the portion of string-value-1 which comes after
string-value-2 [i.e.,the reverse logic of substring-be-
fore()]. This example sets $world-string to the string value
“World”.

 Chapter 3: Understanding SLAX Language Fundamentals 51

contains(string-value-1,

string-value-2)

if(contains($interface-name, “ge-”)) {
 <output> “The interface is Gigabit-Ethernet”;
}

Returns a boolean value of true or false. If string-value-1
contains string-value-2 then it returns true, otherwise it
returns false. The example shows the contains() function. This
code uses it to determine if an interface is a ge or not based on
the presence of the second string “ge-” in the string $interface-
name. If the returned value is true then a string is written to the
result tree.

starts-with(string-
value-1, string-value-2)

if(starts-with($interface-name, “ge-”)) {
 <output> “The interface is Gigabit-Ethernet”;
}

Returns a boolean value of true if string-value-1 begins with
string-value-2, otherwise it returns false. In the example, if
$interface-name begins with “ge-” then a string is written to
the result tree.

string-length(string-
value)

expr string-length(“ospf”);

Returns the number of characters within the string. The exam-
ple causes the value 4 to be written to the result tree.

translate(string-value,
from-string, to-string)

var $new-string = translate($string, “abcdefghijklmnopqr
stuvwxyz”, “ABCDEFGHIJKLMNOPQRSTUVWXYZ”);

The translate() function translates the characters within the
string-value, where the function translates any matching
characters within from-string to their corresponding characters
in to-string and returns the result. This example translates a
string into upper-case.

MORE? This booklet only covers a portion of the available functions. Additional
functions are discussed in the Configuration and Diagnostic Automation
Guide at www.juniper.net/techpubs.

jcs:printf()
Printing unformatted output to the screen is sufficient for some scripts,
but in many cases it is more user-friendly to have formatted script output
where each line follows the same column spacing. The jcs:printf()
function is used in op scripts for this purpose. It returns a string based on
the formatting instructions and values provided in the arguments.

NOTE The jcs:printf() function does not output directly to the console, it
only returns a formatted string. This string can then be output to the
console as desired.

 52 Day One: Applying JUNOS Automation

The syntax for jcs:printf() is the following:

jcs:printf(“expression”, value1, value2, ..., valuex);

The string expression contains embedded placeholders that indicate
where each value should be inserted, as well as the format in which
they should be placed. Here is an example:

<output> “123456789012345678901234567890”;
<output> jcs:printf(“%-10s%-10s”,“OSPF”,“ISIS”);
<output> jcs:printf(“%10s%10s”, “OSPF”, “ISIS”);

There are two embedded placeholders in the expression of each of
these jcs:printf() function calls. An embedded placeholder is
indicated by a % followed by any flags, the width of the field, and the
value type. In the first case:

<output> jcs:printf(“%-10s%-10s”, “OSPF”, “ISIS”);

The %-10s indicates that a string value is inserted in a 10 space column
that is left justified. This is repeated twice, once for “OSPF” and once for
“ISIS”. In the second case:

<output> jcs:printf(“%10s%10s”, “OSPF”, “ISIS”);

The size and number of fields are the same but they lack the – flag,
which causes them to be right justified. Here is the output that is
displayed based on the three lines of code above:

user@JUNOS> op show-pretty-output
123456789012345678901234567890
 OSPF ISIS
 OSPF ISIS

Through proper usage of the jcs:printf() function an op script can
produce output that looks just as well formatted as the normal JUNOS
operational commands.

Try It Yourself: Working with Functions

Create a new script with a variable assigned to the value “Juniper Networks”. Output the
following to the console on separate lines:

1. The variable value
2. The variable value - right justified in a 20 space field
3. The string length of the variable
4. The substring before the space
5. The string converted entirely into uppercase

The jcs:printf() function
supports most standard printf
formats which can be found in
any guide to the printf function,
used by C and other languages.
There are also some JUNOS
specific formats that can be
found in the Configuration and
Diagnostic Automation Guide
within the JUNOS Software
Documentation at www.
juniper.net/techpubs.

Chapter 4

Communicating with JUNOS

Invoking Operational Commands 54

Retrieving Data . 56

Looping with For-each .65

Interactive Input . 67

Writing to the Syslog .69

Reading the Configuration .71

Changing the Configuration .75

 54 Day One: Applying JUNOS Automation

The last two chapters covered most of the necessary SLAX syntax and
statements used to build functional scripts, but the real potential of
JUNOS automation is accomplished through direct communication with
JUNOS devices. This chapter discusses the process that allows the script
to interact with a JUNOS device, including retrieval of operational
information, writing to the syslog, and working with the configuration.

Invoking Operational Commands
Most operational commands that can be executed manually on the
JUNOS CLI prompt can also be invoked within an automation script.
JUNOS processes the commands in the same manner as if they were run
from the CLI. However, JUNOS generates their output in XML and
provides it to the script. The script can then parse the results and perform
any desired actions based on the gathered information.

JUNOS XML API
Invoking operational commands in JUNOS is possible through use of the
JUNOS XML API. The script code sends API Elements to JUNOS, which
then processes the received elements, performs the associated actions, and
returns the results to the script.

Many operational commands are mapped directly to an API Element. For
example, the “clear interfaces statistics” CLI command is mapped
to <clear-interfaces-statistics>. To see the list of mapping between
CLI commands and API Elements consult the JUNOS XML Operational
API Reference Guide (some examples are in Table 4.1). Operational
commands that do not have a specific API Element can be executed by
using the <command> element with the CLI command as its text content:

<command> “show route”;

Table 4.1 API Element Examples

API Element CLI Command

<get-configuration> show configuration

<get-isis-adjacency-information> show isis adjacency

<get-ospf-interface-information> show ospf neighbor

<get-bgp-neighbor-information> show bgp neighbor

<get-chassis-inventory> show chassis hardware

<get-interface-information> show interfaces

<get-route-information> show route

<get-software-information> show version

 Chapter 4: Communicating with JUNOS 55

jcs:invoke()
The Script code sends API elements to JUNOS by calling the jcs:invoke()
function and providing the element as an argument. The API Element can
be expressed either through a result tree fragment variable, or it can be a
string containing the API Element’s name. Any results from jcs:invoke()
are returned as a node-set and should be assigned to a variable:

var $clear-statistics-rpc = <clear-interfaces-statistics-all>;
var $results = jcs:invoke($clear-statistics-rpc);

or
var $results = jcs:invoke(“clear-interfaces-statistics-all”);

In both cases, the clear interfaces statistics all command is
invoked, and any XML results are assigned to the $results variable. The
difference between specifying the API Element in XML versus providing
the string name is that XML attributes, text content, and child elements
can only be included when the API Element is expressed as an XML data
structure assigned to a variable that is passed to jcs:invoke(). Shown
here where the interface to be cleared is provided as a command-line
argument:

/* clear-statistics.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

/* This is imported into the JUNOS CLI help text */
var $arguments = {
 <argument> {
 <name> “interface”;
 <description> “Clear the specified interface statistics”;
 }
 }

/* Command-line argument */
param $interface;

match / {
 <op-script-results> {

 /* JUNOS XML API Element to clear specific interface statistics */
 var $clear-statistics-rpc = <clear-interfaces-statistics> {
 <interface-name> $interface;
 }

 /* Send XML API Element to JUNOS through jcs:invoke() */
 var $results = jcs:invoke($clear-statistics-rpc);

 /* Copy XML contents of $results to the result tree */
 copy-of $results;

 }
}

 56 Day One: Applying JUNOS Automation

In this example, the <clear-interfaces-statistics> API Element is
used to clear the statistics of the interface that is specified within the
command-line of the op script. The API Element is sent to JUNOS by
the jcs:invoke() function and the results of the operation are stored in
the $results variable.

Finally, a new statement can be seen in the script: copy-of. The copy-of
statement is used to copy the contents of a result tree fragment variable
or a node-set to the result tree. The script code above does this to
communicate any error messages. If <clear-interfaces-statistics>
executes successfully then no result is provided, but if there is an error
then a <xnm:error> element is returned with a <message> child element.
<xnm:error> is a valid op script result tree element, so copying it to the
result tree causes the included <message> to be displayed to the console
as an error message:

user@JUNOS> op clear-statistics interface ge-13/0/0
error: device ge-13/0/0 not found

NOTE The JUNOS device processes the received API Elements from jcs:
invoke() immediately rather than waiting for the script to terminate as
with the result tree.

Try It Yourself: Invoking JUNOS operational commands

Following the example of the clear-statistics op script shown in this section, create an op script
that reboots the system. (Hint: The XML API Element needed is <request-reboot>).

Retrieving Data
In the last section, the clear statistics script used the copy-of statement
to send the XML contents of the $results variable to the result tree.
But what exactly were those contents?

The simplest way to know what XML results are returned from jcs:
invoke() is to run the command manually with | display xml append-
ed:

user@JUNOS> op clear-statistics interface ge-13/0/0 | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/9.0R4/junos”>
 <xnm:error xmlns=”http://xml.juniper.net/xnm/1.1/xnm”>
 <source-daemon xmlns=””>
 ifinfo
 </source-daemon>
 <message xmlns=»»>
 device ge-13/0/0 not found
 </message>

 Chapter 4: Communicating with JUNOS 57

 </xnm:error>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

When jcs:invoke() returns its XML result, it assigns the child element
of <rpc-reply> to the $results variable. In this case that is <xnm:
error>. In the clear statistics script the returned XML data structure is
just copied into the result tree. But consider the following modifica-
tion, which allows a success message to be displayed when no error
occurs:

/* clear-statistics.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

/* This is imported into the JUNOS CLI help text */
var $arguments = {
 <argument> {
 <name> “interface”;
 <description> “Clear the specified interface statistics”;
 }
 }

/* Command-line argument */
param $interface;

match / {
 <op-script-results> {

 /* JUNOS XML API Element to clear specific interface statistics */
 var $clear-statistics-rpc = <clear-interfaces-statistics> {
 <interface-name> $interface;
 }

 /* Send XML API Element to JUNOS through jcs:invoke() */
 var $results = jcs:invoke($clear-statistics-rpc);

 /*
 * Check if <xnm:error> is part of $results, if it is then
 * copy the output to the console. Otherwise show the success
 * message.
 */
 if($results/..//xnm:error) {
 copy-of $results;
 }
 else {
 <output> “Statistics Cleared”;
 }
 }
}

 58 Day One: Applying JUNOS Automation

The change here is the addition of an if statement with the following
test: $results/..//xnm:error. This is an example of a location path
that pulls data from the XML data structure and assigns it to the
$results variable. If a <xnm:error> element is present in the results
then the expression evaluates to true and the XML contents of $re-
sults are copied to the result tree. Otherwise “Statistics Cleared”
is output to the console showing that the op script has successfully
cleared the interface statistics.

Location Paths
Location paths are used to extract data from an XML structure. They
follow a fixed syntax that dictates which nodes should be retrieved and
included within the output. The results of a location path are commu-
nicated as a node-set that can be assigned to a variable or used within a
SLAX statement such as if or for-each.

This example helps better illustrate the purpose and usage of location
paths. Consider the following XML data structure:

<system-uptime-information xmlns=”http://xml.juniper.net/junos/9.0R4/junos”>
 <current-time>
 <date-time junos:seconds=”1242673659”>2009-05-18 12:07:39 PDT</date-time>
 </current-time>
 <system-booted-time>
 <date-time junos:seconds=”1242424838”>2009-05-15 15:00:38 PDT</date-time>
 <time-length junos:seconds=”248821”>2d 21:07</time-length>
 </system-booted-time>
 <protocols-started-time>
 <date-time junos:seconds=”1242424912”>2009-05-15 15:01:52 PDT</date-time>
 <time-length junos:seconds=”248747”>2d 21:05</time-length>
 </protocols-started-time>
 <last-configured-time>
 <date-time junos:seconds=”1242424900”>2009-05-15 15:01:40 PDT</date-time>
 <time-length junos:seconds=”248759”>2d 21:05</time-length>
 <user>root</user>
 </last-configured-time>
 <uptime-information>
 <date-time junos:seconds=”1242673659”>12:07PM</date-time>
 <up-time junos:seconds=”248851”>2 days, 21:07</up-time>
 <active-user-count junos:format=”2 users”>2</active-user-count>
 <load-average-1>0.00</load-average-1>
 <load-average-5>0.00</load-average-5>
 <load-average-15>0.00</load-average-15>
 </uptime-information>
 </system-uptime-information>

This is the XML output of the operational command show system
uptime (the API Element is <get-system-uptime-information>). When
this command is executed by jcs:invoke() the <system-uptime-
information> element is returned as the XML result. Once this XML

 Chapter 4: Communicating with JUNOS 59

data has been retrieved and placed into a node-set variable it is possible
for location paths to extract the embedded information.

Using location paths is similar to locating files within a file system. The
search starts at a particular reference point and the use of the forward
slash / indicates that the search path will move to a child of the current
reference point. As an example, assume that $result is the name of the
node-set variable which has been assigned the above XML data
structure. If the boot-time value is desired then it can be retrieved with
the following location-path:

$results/system-booted-time/date-time

This element node could be assigned to another variable:

var $date-time = $results/system-booted-time/date-time;

Or the text value of the date-time element node could be output to the
console:

<output> $results/system-booted-time/date-time;

Reviewing the location path shown above, $results has a default
reference point of the <system-uptime-information> element node.
This is the starting context node from which all location paths defined
using this variable are based.

TIP An easy way to verify the starting reference point of a variable is to use
the name() function. For example: <output> name($results); would
display the XML element name to the console.

The / indicates a location path step. When taking a step, the default
action is to look at the child of the context node. The location path
example specifies <system-booted-time> so all the child nodes of
<system-uptime-information> that are named <system-booted-time>
are selected (in this case, only one). Next the second / indicates another
location path step. The context node within the location path changes
at each step, now it has become the <system-booted-time> element.
Once again the default step is used to search for a child element named
<date-time> (there is only one in this output). This is the end of the
location path so the <date-time> element node is returned. Examples
of location paths using the prior XML data structure:

Was the router booted this year?

If(contains($results/system-booted-time/date-time, “2009”)) {
 /* conditional code goes here... */
}

 60 Day One: Applying JUNOS Automation

How many users are currently online?

var $user-count = $results/uptime-information/active-user-count;

NOTE A // can be used instead of a / if the location path should match on the
desired child node, no matter how deep into the hierarchy it appears.
For example $results//active-user-count would return the same
output as $results/uptime-information/active-user-count.

Parent Axis

By default, the child axis is used for each location path step, but what if
the script needs to go in the opposite direction?

Assume the following has been set in the starting-template:

var $results = jcs:invoke(“get-system-uptime-information”);
var $date-time = $results/system-booted-time/date-time;
call display-boot-time($date-time);

The display-boot-time template has been called with its $date-time
parameter set to the $date-time variable in the calling template, which
consists of a single element node <date-time>. But the display-boot-
time template is intended to display both the <date-time> text value as
well as its sibling element <time-length>. In order to do this, there
must be some way to retrieve <time-length> while starting with <date-
time> as a reference point.

The solution is to use the parent axis instead of the default child axis.
Here is an example of how the template could be written to output
both of the element node values:

template display-boot-time($date-time) {
 <output> “Here is the boot time: “ _ $date-time;
 <output> “Here is the time length: “ _ $date-time/../time-length;
}

This template outputs both the <date-time> element node value to the
console and the <time-length> element node value. The $date-time
parameter is initialized to the <date-time> node so the first output line
can be printed by referring to the variable itself. For the second line a
new location path operator is introduced: the .. parent axis abbrevia-
tion. Just like with a file system cd .. command the .. causes the
location path to search the parent of the context node rather than its
children. So the path goes from <date-time> to the <system-booted-
time> parent. A following / indicates another step, this time using the
default child axis, after which the element node <time-length> is
selected.

 Chapter 4: Communicating with JUNOS 61

Attribute Axis

The child and parent axis are the most commonly used axes within
location paths. The next most needed axis is the attribute axis. It is
through this axis that attribute nodes can be extracted from XML data
structures.

Take a look at the <system-uptime-information> XML output again
and note the number of junos:seconds attributes that are included. For
every time output there is also a corresponding junos:seconds attri-
bute applied to the element. This attribute contains the millisecond
value as an alternative to the complete date/time string.

If this millisecond value is desired instead of the more verbose string
then it can be retrieved through the attribute axis, which is specified by
using the @ abbreviation:

var $results = jcs:invoke(“get-system-uptime-information”);
var $date-time = $results/system-booted-time/date-time/@junos:seconds;
<output> “Boot time milliseconds: “ _ $date-time;

In this case an additional location path step has been added. Rather
than stopping at the date-time node, the location path goes further and
retrieves the junos:seconds attribute node by using the attribute axis
as denoted by the @. As a result, the $date-time variable is assigned to
the milliseconds value, which is then output to the console.

MORE? There are thirteen different axes that can appear in a location path but
most are rarely used. To read about the other location path axes
consult the XPATH specification: http://www.w3.org/TR/xpath#axes/.

Predicates

It is often necessary to be more selective about which nodes are
extracted than is shown in the prior examples. If there are multiple
occurrences of a node of the same name then location paths, based on
the syntax above, would return all of them instead of only a single
node. If the goal is to process all of the returned nodes in the same
manner then that might be the desired behavior. But if the intent is to
only extract a specific node among identically named nodes then a
predicate must be used to indicate this within the location path.

For example, the output of show interface terse displays all the
interfaces available on the JUNOS device. The corresponding <get-
interface-information> API Element returns the same list of inter-
faces. That might be what a script needs, or it might not. It’s important

 62 Day One: Applying JUNOS Automation

to be aware of the default behavior – which is to return all of the nodes
with the same name – and to know how to sharpen the location path using
predicates when a more specific query is desired.

Predicates are filters that prevent non-matching nodes from being included
in the location path result. The predicate expression is enclosed within
brackets [] for example:

var $get-interface-rpc = <get-interface-information> {
 <terse>;
 }
var $results = jcs:invoke($get-interface-rpc);
var $ge-node = $results/physical-interface[name==”ge-1/0/0”];

Here is the XML output of <get-interface-information> <terse>:

<interface-information>
 <physical-interface>
 <name>ge-1/0/0</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <logical-interface>
 <name>ge-1/0/0.0</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <address-family>
 <address-family-name>inet</address-family-name>
 <interface-address>
 <ifa-local junos:emit=”emit”>1.1.1.1/24</ifa-local>
 </interface-address>
 </address-family>
 <address-family>
 <address-family-name>iso</address-family-name>
 </address-family>
 <address-family>
 <address-family-name junos:emit=”emit”>mpls</address-family-name>
 </address-family>
 </logical-interface>
 </physical-interface>
 ... repeated for every interface
</interface-information>

If a script does not specify a predicate, the location path $results/
physical-interface returns a node-set with the <physical-interface>
element nodes for ALL the interfaces in the JUNOS device. But because the
script includes the [name==”ge-1/0/0”] predicate, the location path is
instructed to only include the <physical-interface> element nodes in the
returned node-set if they have a child named <name> whose value is “ge-
1/0/0”. As a result, the location path only returns a single <physical-
interface> element node: the ge-1/0/0 interface.Multiple predicates can be
included within a location path. When more than one predicate is present

 Chapter 4: Communicating with JUNOS 63

they are read from left to right. The expressions within all of the
predicates must evaluate to true or the currently compared node is not
included in the location path result.

This op script shows how predicates can be used in location paths to
sharpen the results. Processing the script displays the admin status of
only a single interface on the console:

/* show-admin-status.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

/* This is imported into the JUNOS CLI help text */
var $arguments = {
 <argument> {
 <name> “interface”;
 <description> “Show admin status of interface”;
 }
 }

/* Command-line argument */
param $interface;

match / {
 <op-script-results> {

 /* JUNOS XML API Element for show interface terse */
 var $get-interface-rpc = <get-interface-information> {
 <terse>;
 }

 /* Retrieve the results of the API request */
 var $results = jcs:invoke($get-interface-rpc);

 /* Assign all matching nodes from the results to the $admin-status variable */
 var $admin-status = $results/physical-interface[name==$interface]/admin-status;

 /* Output the interface admin status to the console */
 <output> “The admin status of “ _ $interface _ “ is “ _ $admin-status;
 }
}

The op script allows the interface to be chosen through a command-
line argument. Then, after retrieving the <get-interface-informa-
tion> output from the jcs:invoke() function, the admin status of only
the selected interface is extracted through a location path with a
predicate included. The output of the script shows:

user@JUNOS> op show-admin-status interface ge-1/0/0
The admin status of ge-1/0/0 is up

 64 Day One: Applying JUNOS Automation

Location Path Operators, Abbreviations, and Wildcards
Table 4.2 lists the operators used within location paths.

Table 4.2 Location Path Operators

Name
Code

Example
Explanation

Location Path Step
 /

var $host-name = $results/system/host-name;

Each / represents one step in the XML hierarchy. The direction of the
step depends on the axis in use, with the default being the child axis.

Multiple Steps
//

var $host-name = $results//host-name;

The // skips over multiple steps in the hierarchy. This example is the
same as the previous example but the <system> element node is skipped
since the // operator will search through zero or more steps. If there
were <host-name> element nodes in other hierarchy levels they would be
returned by this location path as well.

Parent Axis
..

var $errors = $results/..//xnm:error;

The .. is an abbreviation for the parent axis. It indicates that the parent
axis should be searched instead of the default child axis.

Attribute Axis
@

var $changed = $configuration//@changed;

The @ sign is an abbreviation for the attribute axis, indicating that
JUNOS should search the attribute axis instead of the default child axis.

Wildcard Match
*

var $user-children = $configuration/system/login/user/*;

The wildcard matches all nodes along the given axis (by default the
child axis). In this example it would match all of the child nodes for all
<user> element nodes.

Predicates
[]

var $ge-interface = $configuration/interfaces/interface[starts-
with(name, “ge”)];

Predicates are bounded by []. If their expression evaluates to false then
the node is not included in the location path result.

Context Node
.

var $ge-interface = $configuration/interfaces/interface/name[
starts-with(., “ge”)];

A period can be used within a predicate to indicate that the expression
should use the context node value. In this example the <name> element
node itself is evaluated by the starts-with() function since the . is
used as an argument.

 Chapter 4: Communicating with JUNOS 65

Try It Yourself: Retrieving Information from JUNOS
Create a script similar to the show-admin-status.slax example script above, but instead of the
Admin Status report the MTU of a physical interface to the screen. The interface to be displayed
should be selected through a command-line argument.

Looping with For-each
It can be necessary to loop through several returned nodes within a
node-set as a result of location paths. The for-each statement does
this. It instructs the script engine to execute a code block for the first
node and then loop back through the code block for every node until
the node list is exhausted, at which point the script engine continues
past the for-each statement.

The syntax of a for-each loop is similar to an if statement but the
contents within its parenthesis consist of a location path or node-set
variable rather than a conditional expression:

for-each($results/physical-interface/mtu) {
 /* looped code */
}

The $results/physical-interface/mtu location path is evaluated and
a list of nodes returned. The for-each code block is then executed for
each node in the node list. Here is a script that displays the mtu of all
physical interfaces in the router:

/* show-mtu.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

match / {
 <op-script-results> {

 /* Send JUNOS XML API Element via jcs:invoke */
 var $results = jcs:invoke(“get-interface-information”);

 /* Create node list based on location path, loop through each node */
 for-each($results/physical-interface/mtu) {

 /* Output the MTU for all interfaces that don’t have Unlimited MTU */
 if(. != “Unlimited”) {
 <output> “The MTU for “ _ ../name _ “ is “ _ .;
 }
 }
 }
}

 66 Day One: Applying JUNOS Automation

After the <get-interface-information> API Element is used to retrieve
the desired information, a location path based on the returned XML
data is provided to the for-each statement. This location path provides
a result of all the <mtu> element nodes that are children of a <physical-
interface> element node. In other words, all the <mtu> nodes of
physical interfaces are returned.

This node list is submitted to the for-each loop and each time through
the loop the mtu for the interface is output to the screen. An if state-
ment specifies that interfaces without a typical MTU (their MTU is
listed as “Unlimited”) are not shown.

NOTE This same behavior is enforced through a location path predicate
instead: $results/physical-interface[mtu != “Unlimited”]

The code example uses the . abbreviation to refer to the context node.
Each time through the loop the context node changes as a new node is
selected from the node list. The conditional expression . != “Unlim-
ited” is testing if the current <mtu> element node has a value of
“Unlimited” or not. When it does, then its MTU is not shown on the
console.

With the addition of the for-each statement a new reference point,
besides variables, is now available for location paths. Each iteration
through the loop works with a different context node. This context
node is the reference point for any location paths that are not based on
a variable. Look again at this line from the script:

<output> “The MTU for “ _ ../name _ “ is “ _ .;

The . at the end of the sentence refers to the current <mtu> element
node. Concatenating the element node to a string causes its value to be
included. Also, note how the ../name location path is included without
any attached variable. Instead, the ../name location path is compared
against the <mtu> context node. This causes the path to search first the
parent <physical-interface> node of the <mtu> node and then to
select its <name> child node. The result is that the text name of the
physical interface is included in the output string.

Try It Yourself: Retrieving Information from JUNOS
Create a script that displays the logical interface MTU of all interfaces within your JUNOS
device.

 Chapter 4: Communicating with JUNOS 67

Interactive Input
The previous chapter demonstrated how input can be given to the op
script through command-line arguments. Beginning in JUNOS 9.4 it is
also possible to accept this input interactively within the script itself by
using the jcs:get-input() function. In JUNOS 9.6 the jcs:get-
secret() function was also added to prompt for input while hiding the
entered answer from the user.

jcs:get-input() / jcs:input()
The jcs:get-input() function (known as jcs:input() in JUNOS 9.4
and 9.5) causes a prompt to be displayed on the console while the
script engine pauses for the user to type a response that is terminated
by the enter key. A prompt string is specified as the only argument to
the function, the entered answer is returned as a string:

var $user-input = jcs:get-input(“Enter your favorite protocol:
“);

NOTE jcs:input() requires JUNOS 9.4 or above. Starting in JUNOS 9.6, use
jcs:get-input() instead.

A good use for jcs:get-input() is to gather needed information from
missing command-line arguments. As an example, here is a modified
script that displays the admin status of an interface. It has a single
command-line argument of interface. If the command-line argument
is missing then the script uses jcs:get-input() to learn the interface
value:

/* show-admin-status.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

/* This is imported into the JUNOS CLI help text */
var $arguments = {
 <argument> {
 <name> “interface”;
 <description> “Show admin status of interface”;
 }
 }

/* Command-line argument */
param $interface;

match / {
 <op-script-results> {

 68 Day One: Applying JUNOS Automation

 /* JUNOS XML API Element for show interface terse */
 var $get-interface-rpc = <get-interface-information> {
 <terse>;
 }

 /* Retrieve API results through jcs:invoke */
 var $results = jcs:invoke($get-interface-rpc);

 /* Use the command-line argument if provided otherwise ask user through jcs:get-
input() */
 var $interface-value = {
 if(string-length($interface) > 0) {
 expr $interface;
 }
 else {
 expr jcs:get-input(“Enter interface: “);
 }
 }

 /* Locate the matching node and assign to $admin-status */
 var $admin-status = $results/physical-interface[name==$interface-value]/admin-
status;

 /* Output the interface and status to the console */
 <output> “The admin status of “ _ $interface-value _ “ is “ _ $admin-status;
 }
}

The difference between the new script and the original version is the
addition of the $interface-value conditionally-set variable. If the
$interface parameter has been entered through the command-line (as
indicated by having a string-length greater than 0) then its entered value
is used. Otherwise, the jcs:get-input() function is invoked with a
prompt of “Enter interface:”. The user types in the interface name
and presses enter, after which the inputted string is assigned to the
$interface-value variable. This new variable is now used by the
following lines to correctly retrieve the interface admin status from the
$results variable and to print the interface name to the console.

user@JUNOS> op show-admin-status interface fxp0
The admin status of fxp0 is up

user@JUNOS> op show-admin-status
Enter interface: fxp0
The admin status of fxp0 is up

TIP The result tree is only processed after a script is executed, but the jcs:
get-input() and jcs:get-secret() functions run as part of the script
processing. This might cause your output to appear in the incorrect
order because any use of the <output> result tree element is only dis-
played after the script terminates. An alternative method of writing to

 Chapter 4: Communicating with JUNOS 69

the console, which occurs during script processing, is to use the jcs:
output() function. Here is an example :note that it must always be
preceded by the expr statement: expr jcs:output(“Hello World!”);

jcs:get-secret()
The jcs:get-secret() function works in the same way as jcs:get-
input() except that the user input is not echoed to the screen. This
makes the function ideal when the user must enter sensitive informa-
tion such as passwords.

ALERT! jcs:get-secret() requires JUNOS 9.6 or later.

Try It Yourself: Interacting with the User
Modify your script displaying the MTU of a single physical interface. Add a check to see if the
command-line argument for the interface has been entered. If it has not, then request the infor-
mation from the user through the jcs:get-input() function.

Writing to the Syslog
JUNOS scripts can write messages to the syslog by using the jcs:
syslog() function. This requires two arguments. The first is a string
that defines the facility and severity at which the message should be
logged. The second is the message string to be logged.

A single string expresses the facility and severity with a period inbe-
tween, for example “external.error” or “daemon.info”. The available
facilities and severities are listed in Tables 4.3 and 4.4.

Table 4.3 Syslog Facilities

Facility String Description
auth Authorization system

change Configuration change log

conflict Configuration conflict log

daemon Various system processes

external Local external applications

firewall Firewall filtering system

ftp FTP process

interact Commands executed via CLI

pfe Packet forwarding engine

user User processes

 70 Day One: Applying JUNOS Automation

Table 4.4 Syslog Severity Levels

Severity Description
alert Conditions that require immediate correction

crit Critical conditions

debug Debug messages

emerg / panic Panic conditions

err /error Error conditions

info Informational messages

notice Non-error conditions that require special handling

warn / warning Warning messages

When including the jcs:syslog() function in a script it must be
preceded by the expr statement. While there is no result returned to
write to the result tree, SLAX requires that scripts try to do something
with function results, even if they are always blank:

expr jcs:syslog(“external.warn”, “The script changed the configuration”);

The above code would result in the following being logged to the
syslog:

May 21 21:45:13 JUNOS cscript: %EXTERNAL-4: The script changed the configuration

Syslog messages from JUNOS scripts always begin with cscript: .
The %EXTERNAL-4 is present because explicit-priority has been
activated in the configuration for the syslog file. It shows that the
message was logged by the correct facility at the desired severity.

Here is an example script that allows any desired syslog message to be
logged from the CLI. The facility, severity, and message are all entered
through command-line arguments:

/* log-message.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import «../import/junos.xsl»;

/* This is imported into the JUNOS CLI help text */
var $arguments = {
 <argument> {
 <name> «facility»;
 <description> «Facility for the syslog message»;

 Chapter 4: Communicating with JUNOS 71

 }
 <argument> {
 <name> «severity»;
 <description> «Severity level of the syslog message»;
 }
 <argument> {
 <name> «message»;
 <description> «Message to send to syslog»;
 }
}

/* Command-line arguments */
param $facility;
param $severity;
param $message;

match / {
 <op-script-results> {

/* Assemble the facility-severity string */
 var $facility-severity = $facility _ «.» _ $severity;

/* Log message to syslog */
 expr jcs:syslog($facility-severity, $message);
 }
}

If the log-message.slax script is run with the following arguments:

user@JUNOS> op log-message facility user severity notice message “Test Message”

Then it logs this to the syslog (with explicit-priority set):

May 21 21:50:18 JUNOS cscript: %USER-5: Test Message

NOTE jcs:syslog() requires JUNOS 9.0 or later.

Try It Yourself: Writing to the Syslog
Create an op script that logs the user name, script, product, and hostname to the syslog from the
user facility with a severity level of info.

Reading the Configuration
JUNOS scripts can retrieve the current configuration by sending the
<get-configuration> API Element to jcs:invoke():

var $configuration = jcs:invoke(“get-configuration”);

 72 Day One: Applying JUNOS Automation

There are a number of attributes available for <get-configuration>,
the most useful of which is database. It can be set to either committed
or candidate, and it indicates which configuration database should be
returned. The candidate database is returned by default if the database
attribute is missing.

var $rpc = <get-configuration database=”committed”>;
var $committed-configuration = jcs:invoke($rpc);

MORE? Additional attributes is used with the <get-configuration> API
Element. Consult the JUNOScript API Guide in the JUNOS Software
Documentation at www.juniper.net/techpubs/ for more information.

The entire configuration is returned in XML format enclosed within a
parent <configuration> element. To see the XML structure of the
configuration on a JUNOS device, append | display xml to the show
configuration command:

user@JUNOS> show configuration | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/9.6I0/
junos”>
 <configuration ...attributes were cut... >
 <version>9.6I0 [builder]</version>
 <groups>
 <name>re0</name>
 <system>
 <host-name>JUNOS</host-name>
 <time-zone>America/Los_Angeles</time-zone>
 <snip>

The <get-configuration> API Element does not have to return the
entire configuration. When the script requires only portions of the
configuration then specify those hierarchies within <get-configura-
tion>:

var $rpc = <get-configuration database=”committed”> {
 <configuration> {
 <protocols> {
 <bgp>;
 }
 <policy-options>;
 }
 }

As shown above, to request a subset of the configuration, enclose the
desired hierarchies within a <configuration> child element of the
<get-configuration> API Element. The example above only retrieves
the bgp and policy-options hierarchy levels.

Configuration settings can be retrieved through location paths in the
same way as operational results. This example shows how to do it:

 Chapter 4: Communicating with JUNOS 73

/* show-name-servers.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

match / {
 <op-script-results> {

 /* JUNOS XML API Element to retrieve the configuration */
 var $config-rpc = <get-configuration> {
 <configuration> {
 <system>;
 }
 }

 /* Request configuration and assign to $config variable */
 var $config = jcs:invoke($config-rpc);

 /* Extract the name-servers from the config and assign to variable */
 var $name-servers = $config/system/name-server;

 /*
 * If no name-servers are present then output message, otherwise
 * output all the name-server names/addresses.
 */
 if(jcs:empty($name-servers)) {
 <output> “There are no name servers defined.”;
 }
 else {
 <output> “Here are the name-servers:”;
 for-each($name-servers) {
 <output> ./name;
 }
 }
 }
}

The script begins by requesting the current configuration of the system
hierarchy. The $config variable has the <configuration> element node as
its reference point, so the first step of the location path is the main
hierarchy level (in the example: system). The script then loads all the
<name-server> element nodes from the system hierarchy into a node-set
variable $name-servers. What happens next depends on the value of
$name-servers. The jcs:empty() function returns true if its node-set
argument is empty, otherwise it will return false. In the script code, if the
$name-servers variable is empty, so jcs:empty() returns true, then the
output string will express that there are no name-servers. Otherwise, if
name-servers are present in the configuration then a for-each statement
will loop through every element node within the $name-servers variable
and output the address of the name-server. Here is the output:

user@JUNOS> op show-name-servers
Here are the name-servers:
192.168.16.10
192.168.35.10

 74 Day One: Applying JUNOS Automation

This second example looks at the routing-options hierarchy level. It
checks to see if an autonomous-system number has been configured and
reports if one is present or not. It also reports all static routes that have
been configured:

/* show-routing-options.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

match / {
 <op-script-results> {

 /* API Element to retrieve the routing-options configuration in XML */
 var $config-rpc = <get-configuration> {
 <configuration> {
 <routing-options>;
 }
 }

 /* Send API Element to JUNOS via jcs:invoke and retrieve config in XML format */
 var $config = jcs:invoke($config-rpc);

 /* Extract the ASN from the configuration using a location path */
 var $asn = $config/routing-options/autonomous-system/as-number;

 /* If the ASN is defined then output it to the console */
 if(jcs:empty($asn)) {
 <output> “There is no ASN defined.”;
 }
 else {
 <output> “The ASN is: “ _ $asn;
 }

 /* Extract all the static routes from the configuration using a location path */
 var $static-routes = $config/routing-options/static/route;

 /* If there are static routes present then loop through and display them */
 if(jcs:empty($static-routes)) {
 <output> “There are no static routes.”;
 }
 else {
 for-each($static-routes) {
 <output> “There is a static route to “ _ name _ “ with next-hop “ _ next-hop;
 }
 }
 }

If the routing-options configuration looks like this:

<configuration>
 <routing-options>
 <static>
 <route>
 <name>10.1.0.0/16</name>
 <next-hop>192.168.1.1</next-hop>

 Chapter 4: Communicating with JUNOS 75

 </route>
 <route>
 <name>10.2.0.0/16</name>
 <next-hop>192.168.1.1</next-hop>
 </route>
 </static>
 <autonomous-system>
 <as-number>65500</as-number>
 </autonomous-system>
 </routing-options>
</configuration>

Then this will be the output from the script:

user@JUNOS> op show-routing-options
The ASN is: 65500
There is a static route to 10.1.0.0/16 with next-hop 192.168.1.1
There is a static route to 10.2.0.0/16 with next-hop 192.168.1.1

Try It Yourself: Reading the JUNOS Configuration

Create an op script that reads the configuration and outputs all the syslog file names to the
console.

Changing the Configuration
JUNOS scripts are capable of changing, as well as reading, the configu-
ration. When used in this manner op scripts can perform structured
configuration changes, allowing users with less JUNOS familiarity to
safely alter the configuration. As an example, consider a provisioning
script that could ask relevant questions for a new connection and then
automatically commit the needed configuration. This decreases the
complexity in adding new customers even when sophisticated policies
are in place, and it guarantees that all customers are added to the
configuration using the established guidelines.

To change the configuration use the jcs:load-configuration template.
This template is included in the junos.xsl default import file and is
available for use by all op scripts (in JUNOS 9.3 and later). Before using
jcs:load-configuration a connection must be opened. This is needed
because multiple steps must occur for a configuration change to be
successful:

1. The configuration database is locked.

2. The configuration changes are loaded.

3. The configuration is committed.

4. The configuration database is unlocked.

 76 Day One: Applying JUNOS Automation

All of these actions must be performed in a sequence with no interference
from other users or scripts. JUNOS uses connections to ensure that the
steps are performed together rather than in isolation. These connections
are first created by the jcs:open() function, which returns a connection
identifier. When the script is ready to make a configuration change it
passes this connection to the jcs:load-configuration template. After
the changes have been completed, the connection should be closed by
using the jcs:close() function.

NOTE The jcs:open() and jcs:close() functions and the jcs:load-configu-
ration template are only available in JUNOS 9.3 and beyond.

Configuration changes made with the jcs:load-configuration template
are made in exclusive configuration mode. If any users are currently
editing the configuration or if the database is currently locked then the
attempted changes fail. The jcs:load-configuration template first locks
the database; it then loads the configuration change, performs a commit,
and unlocks the database.

The script must provide the connection, and the configuration changes
the jcs:load-configuration template through its parameters. The
change is expressed in SLAX abbreviated XML format and is enclosed
within a <configuration> element. The entire hierarchy level must be
included for the change, which is merged into the existing configuration:

<configuration> {
 <routing-options> {
 <static> {
 <route> {
 <name> “10.3.0.0/16”;
 <next-hop> “192.168.1.1”;
 }
 }
 }
}

The above XML structure could be used to add a new static route for
10.3.0.0/16.

The template parameters used by jcs:load-configuration are $connec-
tion for the connection and $configuration for the configuration
change. An example of the steps needed to make a configuration change
can be seen in the following:

 Chapter 4: Communicating with JUNOS 77

/* The configuration change must be defined */
var $configuration-change = <configuration> {
 <routing-options> {
 <static> {
 <route> {
 <name> “10.3.0.0/16”;
 <next-hop> “192.168.1.1”;
 }
 }
 }
 }

/* A connection must be opened */
var $connection = jcs:open();

/*
 * The connection and change are set as parameters to the jcs:load-configuration
 * template which performs the change. The := operator is used to ensure that the
 * $results variable is a node-set rather than a result tree fragment.
 */
var $results := { call jcs:load-configuration($connection, $configuration =
$configuration-change); }

/* Check for errors – report them if they occurred */
if($results//xnm:error) {
 for-each($results//xnm:error) {
 <output> message;
 }
}

/* The connection is closed */
var $close-results = jcs:close($connection);

NOTE The location path used to check for errors from templates like jcs:
load-configuration is different than the location path for errors from
functions like jcs:invoke(). With jcs:load-configuration the
location path is: “$results//xnm:error”. With jcs:invoke() the
location path is “$results/..//xnm:error”. (Both of these examples
assume that the variable name used is $results.)

MORE? Find more examples of op scripts – including a script for configuring
static routes, a script that extracts a policy chain, a script that lets user
self-serve their local account by changing their password, and a script
to change the default behavior of standard operational mode com-
mands – in the Appendix included in the PDF version of this booklet.

What to Do Next & Where to Go …

http://www.juniper.net/dayone

The PDF version of this booklet contains a supplemental Appendix
with more information and sample answers to the Try It Yourself
sections. Check to see if the other booklets in this series are availabe
here as well.

http://www.juniper.net/scriptlibrary/

The JUNOS Script Library is an online repository of scripts that can be
used on JUNOS devices.

http://forums.juniper.net/jnet

The Juniper-sponsored J-Net Communities forum is dedicated to
sharing information, best practices, and questions about Juniper
products, technologies, and solutions. Register to participate at this
free forum.

http://www.juniper.net/us/en/training/elearning/junos_scripting.html

This course teaches you how use JUNOS automation scripting to
reduce network downtime, reduce configuration complexity, automate
common tasks, and decrease the time to problem resolution.

http://www.juniper.net/techpubs

All Juniper-developed product documentation is freely accessible at
this site. The JUNOS API and Scripting Documentation can be found
within.

http://www.juniper.net/ us/en/products-services/technical-services/j-care

Building on the JUNOS automation toolset, Juniper Networks Ad-
vanced Insight Solutions (AIS) introduces intelligent self-analysis
capabilities directly into platforms run by JUNOS Software. AIS
provides a comprehensive set of tools and technologies designed to
enable the automated delivery of tailored, proactive network intelli-
gence and support services.

Appendix

Supplemental JUNOS Automation

Information

Op Script Examples .80

Try It Yourself Solutions .94

 80 Day One: Applying JUNOS Automation

This Applying JUNOS Automation booklet shows the potential that
JUNOS automation offers to enhance the availability and efficiency of a
network. It explained the foundation of the SLAX scripting language, as
well as the mechanisms used to communicate with JUNOS and to affect
the configuration of the JUNOS device.

This Appendix supplements the information previously discussed by
providing five additional op scripts as well as example solutions to the
Try It Yourself sections.

Op Script Examples

This first section of the Appendix provides five additional scripts, which
highlight the possibilities that op scripts provide and makes use of the
lessons learned in this volume. Extensive comments are included within
the scripts to provide documentation on their structure.

Display Time

In this first example, the display-time template alters the earlier exam-
ple of Chapter 3 by providing an easier way for the user to select the ISO
format or the normal format.

In the prior example the desired-format command-line argument was
added, allowing the user to choose what format in which to display the
time. When the display-time template is called the $format parameter is
set to the value of the $desired-format global parameter.

There is an easier way to write the script to let the user choose the
format. Remember that global parameters and variables are accessible in
the entire script, not just in the main template. This means that it is not
necessary to pass the $format value to the display-time template as a
template parameter. Instead, the display-time template can simply use
the global parameter.

The script operates in the same manner as the script in Chapter 3, but in
this case the named template accesses the global parameter instead of
relying on the main template to pass the format as a template parameter:

/* show-time.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

 Appendix 81

import “../import/junos.xsl”;

/* This is imported into the JUNOS CLI help text */
var $arguments = {
 <argument> {
 <name> “display-format”;
 <description> “Choose either iso or normal”;
 }
}

/* Command-line argument */
param $display-format;

match / {
 <op-script-results> {

 /* Call the display-time template */
 call display-time;

 }
}

/* Output the localtime to the console in either iso (default) or normal format */
template display-time {
 if($display-format == “iso”) {
 <output> “The iso time is “ _ $localtime_iso;
 }
 else {
 <output> “The time is “ _ $localtime;
 }
}

The output is the same as provided by the example of Chapter 3:

user@JUNOS> op show-time display-format iso
The iso time is 2009-05-12 21:01:10 PDT

user@JUNOS> op show-time display-format normal
The time is Tue May 12 21:01:13 2009

Static route

The next script is used to add a static route. First the jcs:get-input()
function is used to learn the static route and then it is used again to
learn the next-hop. Once these two values are known the script
instructs configuration changes, then loads and commits the change:

/* add-route.slax */
version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;

 82 Day One: Applying JUNOS Automation

ns jcs = ”http://xml.juniper.net/junos/commit-scripts/1.0”;
import «../import/junos.xsl»;

match / {
 <op-script-results> {

 /* Ask for the static route */
 var $static-route = jcs:get-input(«Enter the static route: «);

 /* Ask for the next-hop */
 var $next-hop = jcs:get-input(«Enter the next-hop: «);

 /* Create the configuration change */
 var $configuration = <configuration> {
 <routing-options> {
 <static> {
 <route> {
 <name> $static-route;
 <next-hop> $next-hop;
 }
 }
 }
 }

 /* Open a connection */
 var $connection = jcs:open();

 /* Call jcs:load-configuration and provide the connection and configuration
 * change to make.
 */
 var $results := { call jcs:load-configuration($connection, $configuration); }

 /* Check for errors – report them if they occurred */
 if($results//xnm:error) {
 for-each($results//xnm:error) {
 <output> message;
 }
 }

 /* If there are no errors then report success */
 if(jcs:empty($results//xnm:error)) {
 <output> «Committed without errors.»;
 }

 /* Close the connection */
 var $close-results = jcs:close($connection);
 }
}

 Appendix 83

Here is an example of the add-route op script in operation:

user@JUNOS> op add-route
Enter the static route: 10.6.0.0/16
Enter the next-hop: 192.168.1.4
Committed without errors.

And here is the configuration after the scripted change (two routes
were already present):

user@JUNOS> show configuration routing-options
static {
 route 10.1.0.0/16 next-hop 192.168.1.1;
 route 10.2.0.0/16 next-hop 192.168.1.1;
 route 10.6.0.0/16 next-hop 192.168.1.4;
}
autonomous-system 65500;

show-bgp-policy

This is an example of a custom show command that was created to
enhance JUNOS operation. The goal of this script is to provide an easy
way to peruse the complete policy chain of a BGP peer. With multiple
BGP policies in an import or export policy chain, it can become
troublesome to determine exactly when or if a prefix is accepted/
rejected as the policies typically do not appear in the desired order
within the policy-options configuration.

This script extracts the policy chain for the selected peer in the import
or export direction. It then retrieves the configuration text for each
policy, and displays it on the console in sequential order. Now a user
only has to execute the op script and he can then read the complete
policy chain from start to finish.

This shows the output of the script when asked to report the import
policies for peer 10.0.0.1:

user@JUNOS> op show-bgp-policy neighbor 10.0.0.1 direction import
BGP Neighbor: 10.0.0.1 in group EBGP
Import Policies: block-private set-local-pref accept-by-community
Policy: block-private
 policy-statement block-private {
 from {
 route-filter 192.168.0.0/16 orlonger;
 route-filter 10.0.0.0/8 orlonger;
 route-filter 172.16.0.0/12 orlonger;
 }
 then reject;

 84 Day One: Applying JUNOS Automation

 }
Policy: set-local-pref
 policy-statement set-local-pref {
 term default {
 then {
 local-preference 50;
 }
 }
 term pref-75 {
 from community pref-75;
 then {
 local-preference 75;
 }
 }
 term pref-100 {
 from community pref-100;
 then {
 local-preference 100;
 }
 }
 }
Policy: accept-by-community
 policy-statement accept-by-community {
 term accept {
 from community from-64500;
 then accept;
 }
 term reject {
 then reject;
 }
 }

An additional feature of this script is that a user can use the database
command-line argument to select between the committed configura-
tion and the candidate configuration. The committed configuration is
used by default. However, the option to view the policy chain in the
candidate configuration is useful to verify the BGP policy configuration
prior to committing any policy changes.

The script code for show-bgp-policy.slax follows:

/*
 * This op script displays the full chain of policy configuration for a given
 * neighbor and import/export direction. Either the candidate or the committed
 * database can be used, with the committed database used by default.
 *
 * Usage: op show-bgp-policy neighbor 10.0.0.1 direction import
 *
 */

 Appendix 85

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

/*
 * The $arguments global variable is a special variable which JUNOS reads to build
 * the CLI help for the script. The command-line arguments will appear within the help
 * message along with their description if the following format is followed.
 */
var $arguments = {
 <argument> {
 <name> “neighbor”;
 <description> “Required: The BGP neighbor address”;
 }
 <argument> {
 <name> “direction”;
 <description> “Required: Policy direction, either import or export”;
 }
 <argument> {
 <name> “database”;
 <description> “Optional: Specify either the [committed] or candidate configuration
database”;
 }
}

/* These global parameters are assigned based on their corresponding command-line
arguments */
param $neighbor;
param $direction;
param $database=”committed”;

match / {
 <op-script-results> {

 /*
 * The script first sanity checks the $neighbor and $direction command-line
arguments. If they
 * have not been set correctly then the script exits by using the <xsl:message>
command element
 * and specifying that the script should end by setting the terminate attribute to
“yes”. Note
 * that <xsl:message> is not a result tree element, it is one of the few elements
that is
 * processed immediately rather than written to the result tree.
 */
 if(jcs:empty($neighbor) or jcs:empty($direction) or

 86 Day One: Applying JUNOS Automation

 ($direction != “import” and $direction != “export”)) {
 <xsl:message terminate=”yes”> “The neighbor address and policy direction must be
specified.”;
 }

 /*
 * The database should be set to either “committed” or “candidate”, if not then exit
the script
 * with an error
 */
 if($database != “committed” and $database != “candidate”) {
 <xsl:message terminate=”yes”> “The database is not set correctly.”;
 }

 /*
 * This API element is used to retrieve the configuration. Either the candidate or
the committed
 * configuration can be used. The choice is based on the $database command-line
argument. In
 * addition the inherit attribute has been set. This is used to request that the
configuration be
 * retrieved in inherited mode meaning that all configuration from configuration
groups will be
 * inherited into its proper hierarchy level. This is done so that the script has an
accurate view
 * of the current BGP policy configuration.
 */
 var $get-bgp-rpc = <get-configuration database=$database inherit=”inherit”> {
 <configuration> {
 <protocols> {
 <bgp>;
 }
 }
 }

 /*
 * The assembled API element is sent to JUNOS through jcs:invoke and the XML
response is stored in
 * $bgp-config
 */
 var $bgp-config = jcs:invoke($get-bgp-rpc);

 /*
 * The BGP neighbor is extracted from the configuration through a location path. The
last()
 * function is used to guarantee that only one element node will be returned. It
returns true
 * only if the node is the last in the node list so only one node can be selected and
assigned to
 * $bgp-neighbor.
 */

 Appendix 87

 var $bgp-neighbor = $bgp-config/protocols/bgp//neighbor[name == $neighbor
][last()];

 /*
 * Error check, if the $bgp-neighbor is missing than jcs:empty() will return true
and the script
 * will be terminated with an error message.
 */
 if(jcs:empty($bgp-neighbor)) {
 <xsl:message terminate=”yes”> “BGP Neighbor “ _ $neighbor _ “ isn’t configured.”;
 }

 /*
 * Begin the output. The BGP neighbor will be shown first as well as the BGP group it
is in.
 */
 <output> “BGP Neighbor: “ _ $neighbor _ “ in group “ _ $bgp-neighbor/../name;

 /*
 * The BGP policy list will now be retrieved. To do this the jcs:first-of() function
is used.
 * This is necessary because a BGP peer’s policy can be configured at up to three
different
 * hierarchy levels: the neighbor level, the group level, or the bgp level. The peer
uses the
 * policy configuration at the most specific level. jcs:first-of() works by checking
multiple
 * node-set arguments. The first node-set that is not empty will be returned. So in
this case
 * three separate location paths are provided (each of which results in a node-set).
The first
 * location path refers to any policies at the neighbor level, the second pulls
policies at the
 * group level, and the last pulls policies at the bgp level. The most specific
location that has
 * policies will be returned and assigned to the $policy-list variable.
 */
 var $policy-list = jcs:first-of($bgp-neighbor/*[name()==$direction],
 $bgp-neighbor/../*[name()==$direction],
 $bgp-neighbor/../../*[name()==$direction]);

 /*
 * Error check, if there are no policies then the script can terminate.
 */
 if(jcs:empty($policy-list)) {
 <xsl:message terminate=”yes”> “There are no “ _ $direction _ “ policies for “ _
$neighbor;
 }

 /*
 * The policy chain is now output to the console. This is done all within one line by

 88 Day One: Applying JUNOS Automation

writing
 * the text strings to a single <output> element through the expr statement.
 */
 <output> {
 if($direction == “import”) {
 expr “Import Policies:”;
 }
 else {
 expr “Export Policies:”;
 }
 for-each($policy-list) {
 expr “ “ _ .;
 }
 }

 /* A for-each will now loop through each policy individually to allow them to be
displayed */
 for-each($policy-list) {

 /* Output the policy name */
 <output> “\nPolicy: “ _ .;

 /*
 * The script must retrieve the text version of each policy one by one. By default the
 * returned configuration is always in XML format. To see the configuration in text
format
 * use the format attribute and set it to “text”.
 */
 var $get-policy-rpc = <get-configuration format=”text” database=$database
inherit=”inherit”> {
 <configuration> {
 <policy-options> {
 <policy-statement> {
 <name> .;
 }
 }
 }
 }

 /* Send assembled API element to JUNOS through jcs:invoke(); */
 var $policy-text = jcs:invoke($get-policy-rpc);

 /*
 * The returned configuration will include the entire hierarchy including the policy-
options
 * statement and enclosing brackets. This is extra clutter that is not needed so it is
removed
 * by using the substring-after and substring functions to remove all the unnecessary
 * characters. The complete text policy is then output to the console.
 */

 Appendix 89

 var $cropped-text =substring-after($policy-text, “policy-options {“);
 <output> substring($cropped-text, 1, string-length($cropped-text)-2);
 }
 }
}

change-password

This example shows a script that performs an automated configuration
change. This script allows a user to self-serve their local account by
changing their password from the command-line. The minimum
version required is JUNOS 9.6 as the jcs:get-secret() function is
used to query the user for his new password.

Here is an example of the output of the script:

user@JUNOS> op change-password
Enter the new password:
Reenter the new password:
Password changed.

Here is the script code for change-password.slax:

/*
 * This op script changes the password for the current user. The password is
 * learned using jcs:get-secret() for security purposes so the minimum JUNOS version
 * is 9.6
 */
version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = ”http://xml.juniper.net/junos/commit-scripts/1.0”;

import «../import/junos.xsl»;

match / {
 <op-script-results> {

 /*
 * Query the user for the new password. Use jcs:get-secret() so that the password
 * is not shown on the screen. Ask twice and compare the entries. Terminate the
 * script if they are not the same.
 */
 var $new-password = jcs:get-secret(«Enter the new password: «);
 var $new-password2 = jcs:get-secret(«Reenter the new password: «);

 if($new-password != $new-password2) {
 <xsl:message terminate=»yes»> «The passwords do not match.»;
 }
 if(string-length($new-password) == 0) {

 90 Day One: Applying JUNOS Automation

 <xsl:message terminate=»yes»> «The password is blank.»;
 }

 /*
 * Assemble the configuration change needed to change the password. Pull in the
 * user name from the $user default global parameter.
 */
 var $configuration = {
 <configuration> {
 <system> {
 <login> {
 <user> {
 <name> $user;
 <authentication> {
 <plain-text-password-value> $new-password;
 }
 }
 }
 }
 }
 }

 /* Open a connection */
 var $connection = jcs:open();

 /*
 * Send the configuration change and connection to jcs:load-configuration, it will
load
 * the change and commit it.
 */
 var $result := { call jcs:load-configuration($connection, $configuration); }

 /* Check for commit errors - report them if found */
 if($result//xnm:error) {
 <output> jcs:output(«Error changing the password»);
 for-each($result//xnm:error) {
 <output> message;
 }
 }
 else {
 <output> «Password changed.»;
 }

 /* Close the connection */
 var $close-results = jcs:close($connection);
 }
}

 Appendix 91

safe-bgp-clear

This last example shows how scripts can wrap around standard
operational mode commands to alter their default behavior. When
users enter clear bgp neighbor then all BGP peering sessions are
restarted. This script makes the command safer by requiring users to
confirm that they really do want to restart all their sessions. The
minimum version required is JUNOS 9.6 because the jcs:get-input()
function is used to perform confirmation.

Here is an example of the output of the script:

user@JUNOS> op safe-bgp-clear peer all
This will clear ALL BGP sessions
Are you sure? (yes/[no]): yes
Cleared 2 connections

Here is the script code for safe-bgp-clear.slax:

/*
 * This script provides a safe version of the “clear bgp neighbor” command. That command
 * allows an operator to accidently clear all BGP neighbors when no address is
specified.
 * This script requires “peer all” to be specified in order to clear all BGP neighbors,
 * and it requires confirmation from the operator that they do indeed wish to clear all
 * of their BGP peers.
 *
 * Minimum JUNOS version is 9.6 due to the jcs:get-input() function. (This can be
performed
 * in JUNOS 9.4 and 9.5 by using the deprecated jcs:input() function.)
 */

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

/*
 * The $arguments global variable is a special variable which JUNOS reads to build
 * the CLI help for the script. The command-line arguments will appear within the help
 * along with their description as long as the following format is followed.
 */
var $arguments = {
 <argument> {
 <name> “peer”;
 <description> “Neighbor address to drop or ‘all’ for all sessions”;
 }
}

 92 Day One: Applying JUNOS Automation

/* This global parameter will have its value set based on the matching command-line
argument */
param $peer;

match / {
 <op-script-results> {

 /*
 * The script requires that a peer be specified. If the user did not enter a peer on
the
 * command-line then display an error and exit.
 */
 if(string-length($peer) == 0) {
 <xsl:message terminate=”yes”> “You must specify which BGP peer you want to
clear.”;
 }

 /*
 * If peer ‘all’ was entered on the command-line then the user will need to confirm
the choice
 * before clearing all the BGP peers.
 */
 if($peer == “all”) {

 /*
 * Request confirmation from user before clearing all the BGP peers. In JUNOS 9.4 &
9.5
 * jcs:input() can be used instead.
 */
 var $prompt = “This will clear ALL BGP sessions\nAre you sure? (yes/[no]): “;
 var $response = jcs:get-input($prompt);

 if($response == “yes”) {
 /*
 * The user confirmed they wish to clear all sessions so call the execute-command
 * template.
 */
 call execute-command();
 }
 else {
 /*
 * If they decided not to clear all the sessions then display that choice to the
 * console.
 */
 <output> “Clear all cancelled”;
 }
 }
 else {
 /* There is no need to confirm the clearing of a specific peer, just execute the
clear
 * command by calling the execute-command template.
 */
 call execute-command();

 Appendix 93

 }
 }
}

/*
 * This template will invoke the clear bgp neighbor command and display any output to
the console.
 */
template execute-command() {

 /* There is no mapped API Element for clear bgp neighbor so the <command> element will
be used */
 var $command = {
 /* If all is specified then just do the normal command, otherwise include the peer
address */
 if($peer == “all”) {
 <command> “clear bgp neighbor”;
 }
 else {
 <command> “clear bgp neighbor “ _ $peer;
 }
 }

 /* Execute the command and retrieve the results */
 var $results = jcs:invoke($command);

 /* Copy output to the result tree so that it will be displayed on the console */
 copy-of $results;
}

 94 Day One: Applying JUNOS Automation

Try It Yourself Sample Solutions

This section of the Appendix provides sample solutions for each of the
Try It Yourself sections in Chapters 1 through 4.

Chapter 1:
Try It Yourself: Viewing JUNOS Configuration in XML

Show the following configuration hierarchy levels in XML on a JUNOS device:

(e.g. show configuration system | display xml)

[system]
[interfaces]
[protocols]

user@JUNOS> show configuration system | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/9.0R4/junos”>
 <configuration junos:commit-seconds=”1248125252” junos:commit-localtime=”2009-07-20
14:27:32 PDT” junos:commit-user=”user”>
 <system>
 <host-name>JUNOS</host-name>
 <login>
 <user>
 <name>user</name>
 <authentication>
 <encrypted-password>pVFST7cOl4Hu2</encrypted-password>
 </authentication>
 </user>
 </login>
 </system>
 </configuration>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

user@JUNOS> show configuration interfaces | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/9.0R4/junos”>
 <configuration junos:commit-seconds=”1248125420” junos:commit-localtime=”2009-07-20
14:30:20 PDT” junos:commit-user=”user”>
 <interfaces>
 <interface>
 <name>lo0</name>
 <unit>
 <name>0</name>
 <family>

 Appendix 95

 <inet>
 <address>
 <name>10.3.3.3/32</name>
 </address>
 </inet>
 <iso>
 <address>
 <name>47.0000.3333.3333.3333.00</name>
 </address>
 </iso>
 </family>
 </unit>
 </interface>
 </interfaces>
 </configuration>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

user@JUNOS> show configuration protocols | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/9.0R4/junos”>
 <configuration junos:commit-seconds=”1248125504” junos:commit-localtime=”2009-07-20
14:31:44 PDT” junos:commit-user=”user”>
 <protocols>
 <ospf>
 <area>
 <name>0.0.0.0</name>
 <interface>
 <name>ge-1/0/0.0</name>
 </interface>
 </area>
 </ospf>
 <pim>
 <interface>
 <name>ge-1/0/0.0</name>
 </interface>
 </pim>
 </protocols>
 </configuration>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

 96 Day One: Applying JUNOS Automation

Chapter 1:
Try It Yourself: Writing XML in the SLAX Abbreviated Format

Rewrite the following configuration using the SLAX abbreviated XML format:

system {
 host-name r1;
 login {
 message “Unauthorized access prohibited.”;
 }
}

<system> {
 <host-name> “r1”;
 <login> {
 <message> “Unauthorized access prohibited.”;
 }

}

Chapter 2:
Try It Yourself: Adding Comments to the Hello World Script

Make the following modifications to the Hello World script:

1. Add a multi-line comment at the beginning that describes the purpose of the script.

2. Add an additional comment before the <output> “Hello World!”; line which states that the
script is writing to the console.

After the two modifications have been made, replace the prior version of hello-world.slax on
your JUNOS device with the new version. Execute the script again and verify that the new
comments did not change the operation.

/*
 * hello-world.slax – This script will output “Hello World!” to the console.
 */
version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {
 /* This writes the string to the console. */
 <output> “Hello World!”;
 }
}

 Appendix 97

Chapter 2:
Try It Yourself: Adding Additional Output to the Hello World Script

Modify the Hello World script once again. This time, add two additional lines of output to the
console above the Hello World! string.

Replace the prior version of hello-world.slax on your JUNOS device with the changed version.
Execute the script again and see the affect the new <output> elements have on the script output.

/*
 * hello-world.slax – This script will output “Hello World!” to the console.
 */
version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {
 /* This writes the string to the console. */
 <output> “I have a message for you.”;
 <output> “Here is the message:”;
 <output> “Hello World!”;
 }
}

Chapter 2:
Try It Yourself: Writing Your Own Script Using the Boilerplate

Using the configuration boilerplate, create a new op script that outputs three separate lines of
text to the console. Copy this script to your JUNOS device and enable it. Now you can verify it
by executing it from the command-line.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

 98 Day One: Applying JUNOS Automation

match / {
 <op-script-results> {
 <output> “One”;
 <output> “Two”;
 <output> “Three”;
 }
}

Chapter 3:
Try It Yourself: Working with Operators

Create a new script including two variables that are assigned numeric values. Add a third
variable and assign it the product of the first two variables. Display the value of the third
variable on the console.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {
 var $first-variable = 100;
 var $second-variable = 5;
 var $third-variable = $first-variable * $second-variable;
 <output> “Result: “ _ $third-variable;
 }
}

Chapter 3:
Try It Yourself: Working with Command-line Arguments

Create a new script with a command-line argument that accepts a number from the user. Include
the $arguments global variable so that the command-line argument will be included in the CLI
help output. Perform a mathematical operation on the command-line argument and output the
result to the console. Execute the op script a few times, with a different number provided on the
command-line each time to verify that the result changes according to the entered number.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

 Appendix 99

var $arguments = {
 <argument> {
 <name> “number”;
 <description> “The number to multiply.”;
 }
}

param $number;

match / {
 <op-script-results> {
 <output> “Result: “ _ $number * 55;
 }
}

Chapter 3:
Try It Yourself: Conditionally Assigning Variable Values

Create a new script with a command-line argument which can be set to either + or - signifying
the mathematical operation that you wish to perform. Create a variable that is assigned condi-
tionally based on the value of the command-line argument. If the command-line argument is
specified as a + then two values should be added together and assigned to the variable. If the
command-line argument is specified as a - then subtraction should be performed between the
two values and assigned to the variable. Output the result to the console.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = ”http://xml.juniper.net/junos/commit-scripts/1.0”;

import «../import/junos.xsl»;

var $arguments = {
 <argument> {
 <name> «operator»;
 <description> «Either + or -»;
 }
}

param $operator;

match / {
 <op-script-results> {
 var $first = 31;
 var $second = 14;

 100 Day One: Applying JUNOS Automation

 var $conditional = {
 if($operator == «+») {
 expr $first + $second;
 }
 else if($operator == «-») {
 expr $first - $second;
 }
 }
 <output> $conditional;
 }
}

Chapter 3:
Try It Yourself: Working with Named Templates

Create a new script that contains a named template. The template should write a string to the
result tree. Redirect this into a variable in the calling template and output the variable value to
the console.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {

 var $redirected = { call output-string(); }

 <output> $redirected;
 }
}

template output-string() {
 expr “Here is the output string”;
}

 Appendix 101

Chapter 3:
Try It Yourself: Working with Functions

Create a new script with a variable assigned to the value “Juniper Networks”. Output the
following to the console on separate lines:

1. The variable value

2. The variable value - right justified in a 20 space field

3. The string length of the variable

4. The substring before the space

5. The string converted entirely into upper-case.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {

 var $variable = “Juniper Networks”;
 <output> $variable;
 <output> jcs:printf(“%20s”, $variable);
 <output> string-length($variable);
 <output> substring-before($variable, “ “);
 <output> translate($variable, “abcdefghijklmnopqrstuvwxyz”, “ABCDEFGHIJKLMNOPQRST
UVWXYZ”);
 }

}

Chapter 4:
Try It Yourself: Invoking JUNOS Operational Commands

Following the example of the clear-statistics op script shown in this section, create an op script
that reboots the system. (Hint: The XML API Element needed is <request-reboot>).

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = ”http://xml.juniper.net/junos/commit-scripts/1.0”;

 102 Day One: Applying JUNOS Automation

import «../import/junos.xsl»;

match / {
 <op-script-results> {

 var $result = jcs:invoke(«request-reboot»);

 }
}

Chapter 4:
Try It Yourself: Retrieving Information from JUNOS

Create a script similar to the show-admin-status.slax example script above, but instead of the
Admin Status report the MTU of a physical interface to the screen. The interface to be displayed
should be selected through a command-line argument.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

var $arguments = {
 <argument> {
 <name> “interface”;
 <description> “Show MTU of interface”;
 }
}

param $interface;

match / {
 <op-script-results> {

 var $results = jcs:invoke(“get-interface-information”);

 var $mtu = $results/physical-interface[name==$interface]/mtu;

 /* Output the interface mtu to the console */
 <output> “The mtu of “ _ $interface _ “ is “ _ $mtu;
 }
}

 Appendix 103

Chapter 4:
Try It Yourself: Retrieving Information from JUNOS

Create a script that displays the logical interface MTU of all interfaces within your JUNOS
device.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {

 var $results = jcs:invoke(“get-interface-information”);

 for-each($results/physical-interface/logical-interface/address-family/mtu) {

 if(. != “Unlimited”) {
 <output> “The family “ _ ../address-family-name _ “ MTU for “ _ ../../name _ “ is
“ _ .;
 }
 }
 }
}

Chapter 4:
Try It Yourself: Interacting with the User

Modify your script that displays the MTU of a single physical interface. Add a check to see if the
command-line argument for the interface has been entered. If it has not then request the infor-
mation from the user through the jcs:get-input() function.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

 104 Day One: Applying JUNOS Automation

var $arguments = {
 <argument> {
 <name> “interface”;
 <description> “Show MTU of interface”;
 }
}

param $interface;

match / {
 <op-script-results> {

 var $interface-value = {
 if(string-length($interface) > 0) {
 expr $interface;
 }
 else {
 expr jcs:get-input(“Enter interface: “);
 }
 }

 var $results = jcs:invoke(“get-interface-information”);

 var $mtu = $results/physical-interface[name==$interface-value]/mtu;

 /* Output the interface mtu to the console */
 <output> “The mtu of “ _ $interface-value _ “ is “ _ $mtu;
 }
}

Chapter 4:
Try It Yourself: Writing to the Syslog

Create an op script that logs the user name, script, product, and hostname to the syslog from the
user facility with a severity level of info.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {

 var $syslog-message = “User: “ _ $user _ “ Script: “ _ $script _ “ Product: “ _

 Appendix 105

 $product _ “ Hostname: “ _ $hostname;
 expr jcs:syslog(“user.info”, $syslog-message);
 }
}

Chapter 4:
Try It Yourself: Reading the JUNOS Configuration

Create an op script that reads the configuration and outputs all the syslog file names to the
console.

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {

 var $configuration = jcs:invoke(“get-configuration”);

 for-each($configuration/system/syslog/file) {
 <output> “Syslog File: “ _ name;
 }
 }
}

	Front Cover
	Back Cover
	Table of Contents
	Copyright Page & Acknowledgments

	Welcome to Day One Automation
	What You Need to Know Before Reading
	Chapter 1: Introducing JUNOS Automation
	What JUNOS Automation Can Do
	How JUNOS Automation Works
	XML Basics
	SLAX Abbreviated XML Format

	Chapter 2: Writing Your First Script
	Hello World
	SLAX Syntax Rules
	Understanding the Result Tree
	Importing Script Code
	The Main Template
	Using the Op Script Boilerplate

	Chapter 3: Understanding SLAX Language Fundamentals
	Variables
	Operators
	Parameters
	Command-line Arguments
	Conditional If Statements
	Named Templates
	Functions

	Chapter 4: Communicating with JUNOS
	Invoking Operational Commands
	Retrieving Data
	Looping with For-each
	Interactive Input
	Writing to the Syslog
	Reading the Configuration
	Changing the Configuration

	Resources: What to Do Next & Where to Go
	Appendix: Supplemental JUNOS Automation Information
	Op Script Examples
	Try It Yourself Sample Solutions

